-
公开(公告)号:CN114706678B
公开(公告)日:2025-03-28
申请号:CN202210284033.8
申请日:2022-03-22
Applicant: 中南大学
Abstract: 本发明公开了一种边缘智能服务器神经网络推断任务调度方法,步骤包括:利用GPU虚拟化技术将GPU虚拟成多个虚拟GPU;按照预设的分配策略,为虚拟GPU分配预设的资源,用排队服务系统按照预设的执行批次,为每个推断任务的类别对应的虚拟GPU分配推断任务;收集每一类推断任务的平均服务延迟和计算资源量,判断是否需要调整分配策略,是则用强化学习算法计算新的分配策略;按照新的分配策略,为虚拟GPU分配对应的资源,用排队服务系统按照对应的执行批次,为每个任务的类别对应的虚拟GPU分配神经网络推断任务。本发明以较低的计算复杂度,满足动态场景的实时性要求,并且有效的解决了在较大规模的边缘计算场景中的负载均衡问题。
-
公开(公告)号:CN114706678A
公开(公告)日:2022-07-05
申请号:CN202210284033.8
申请日:2022-03-22
Applicant: 中南大学
Abstract: 本发明公开了一种边缘智能服务器神经网络推断任务调度方法,步骤包括:利用GPU虚拟化技术将GPU虚拟成多个虚拟GPU;按照预设的分配策略,为虚拟GPU分配预设的资源,用排队服务系统按照预设的执行批次,为每个推断任务的类别对应的虚拟GPU分配推断任务;收集每一类推断任务的平均服务延迟和计算资源量,判断是否需要调整分配策略,是则用强化学习算法计算新的分配策略;按照新的分配策略,为虚拟GPU分配对应的资源,用排队服务系统按照对应的执行批次,为每个任务的类别对应的虚拟GPU分配神经网络推断任务。本发明以较低的计算复杂度,满足动态场景的实时性要求,并且有效的解决了在较大规模的边缘计算场景中的负载均衡问题。
-