-
公开(公告)号:CN107392317B
公开(公告)日:2018-03-27
申请号:CN201710631220.8
申请日:2017-07-28
Applicant: 中南大学
Abstract: 本发明公开了一种智能环境运载机器人识别楼层的神经网络群体混合计算方法,该方法通过对采集的各种数据按照天气模式聚类后,再按照不同的天气模式,对波动的压力传感器读数进行FIR滤波处理后,再将其传输至数据分析模块进行神经网络学习,大大提高了楼层辨识的准确性、实时性。极大改善了压力传感器获取的数据的震荡的问题,极大提高了高度数据信号分析的精度;具有普遍适应性,能够应对各种海拔高度,各种地理位置,各种天气条件下的电梯楼层识别;并不局限于运载机器人在电梯内使用,还可以在楼道中进行楼层估计,也能应用于高空作业、无人机等领域。
-
公开(公告)号:CN107436604B
公开(公告)日:2018-03-16
申请号:CN201710643367.9
申请日:2017-07-31
Applicant: 中南大学
IPC: G05D1/02
Abstract: 本发明公开了一种智能环境下运载机器人路径智能分解控制规划方法,该方法包括:步骤1:对运载机器人运载区域构建全局地图三维坐标系,获取在全局地图三维坐标系下的可行走区域坐标;步骤2:获取训练样本集;步骤3:构建运载机器人的全局静态路径规划模型;步骤4:实时获取最优路径,完成运输任务。本发明通过构建狼群算法优化的核极限学习机建立路径规划模型,在智能环境下能快速的找到全局最优解,避免了常见的路径规划中陷入局部最优的问题。
-
公开(公告)号:CN107368926B
公开(公告)日:2018-07-10
申请号:CN201710630329.X
申请日:2017-07-28
Applicant: 中南大学
Abstract: 本发明提供了一种智能环境运载机器人识别楼层的多自然传感参数融合处理方法,利用成本较低的温度、湿度、气压传感器搜集数据,建立数据库,针对气压随高度变化的特性,采用大数据处理技术,利用CPSO优化的ELMAN神经网络模型完成预测模型的建立,实现运载机器人在各种环境下的电梯楼层自适应辨识,有效解决了不同环境下同一高度气压值变动导致楼层辨识不准的情况。此外,本发明无需对电梯内部或外部进行改造,具有极高的普适性。
-
公开(公告)号:CN107368076B
公开(公告)日:2018-03-27
申请号:CN201710640558.X
申请日:2017-07-31
Applicant: 中南大学
IPC: G05D1/02
Abstract: 本发明公开了一种智能环境下机器人运动路径深度学习控制规划方法,该方法包括:步骤1:对运载机器人运载区域构建全局地图三维坐标系,获取在全局地图三维坐标系下的可行走区域坐标;步骤2:获取训练样本集;步骤3:构建运载机器人的全局静态路径规划模型;步骤4:将运输任务中的起点和终点坐标输入至基于模糊神经网络的全局静态路径规划模型,获得对应的运载机器人最优规划路径。本发明通过分别建立全局静态路径规划模型和局部动态避障规划模型,利用深度学习的极强的非线性拟合特性,快速的找到全局最优路径,避免了常见的路径规划中陷入局部最优的问题。
-
公开(公告)号:CN107436604A
公开(公告)日:2017-12-05
申请号:CN201710643367.9
申请日:2017-07-31
Applicant: 中南大学
IPC: G05D1/02
CPC classification number: G05D1/0221 , G05D1/0214 , G05D1/0223 , G05D2201/0216
Abstract: 本发明公开了一种智能环境下运载机器人路径智能分解控制规划方法,该方法包括:步骤1:对运载机器人运载区域构建全局地图三维坐标系,获取在全局地图三维坐标系下的可行走区域坐标;步骤2:获取训练样本集;步骤3:构建运载机器人的全局静态路径规划模型;步骤4:实时获取最优路径,完成运输任务。本发明通过构建狼群算法优化的核极限学习机建立路径规划模型,在智能环境下能快速的找到全局最优解,避免了常见的路径规划中陷入局部最优的问题。
-
公开(公告)号:CN108044625B
公开(公告)日:2019-08-30
申请号:CN201711364995.X
申请日:2017-12-18
Applicant: 中南大学
Abstract: 本发明公开了一种基于多Leapmotion虚拟手势融合的机器人机械臂操控方法,包括以下步骤:步骤1:设置手势采集装置;步骤2:基于手势采集装置采集控制机械臂的手势的leapmotion序列图像,并利用基于核极限学习机的手势识别模型对手势进行识别;步骤3:利用预设的控制手势与机械臂实际操作手势比例因子,获取机械臂操作目标终点;步骤4:获得机械臂运动方案;步骤5:选取最佳机械臂的操控方案。该方案使用多Leapmotion传感器采集手势序列图像,使用加权融合算法将手势图像进行融合,具有很强的容错性;使用多leapmotion手势识别装置,相比于现有机械臂示教器与体感设备,操控装置成本低,且操控性强、准确度高。
-
公开(公告)号:CN108044625A
公开(公告)日:2018-05-18
申请号:CN201711364995.X
申请日:2017-12-18
Applicant: 中南大学
Abstract: 本发明公开了一种基于多Leapmotion虚拟手势融合的机器人机械臂操控方法,包括以下步骤:步骤1:设置手势采集装置;步骤2:基于手势采集装置采集控制机械臂的手势的leapmotion序列图像,并利用基于核极限学习机的手势识别模型对手势进行识别;步骤3:利用预设的控制手势与机械臂实际操作手势比例因子,获取机械臂操作目标终点;步骤4:获得机械臂运动方案;步骤5:选取最佳机械臂的操控方案。该方案使用多Leapmotion传感器采集手势序列图像,使用加权融合算法将手势图像进行融合,具有很强的容错性;使用多leapmotion手势识别装置,相比于现有机械臂示教器与体感设备,操控装置成本低,且操控性强、准确度高。
-
公开(公告)号:CN107368926A
公开(公告)日:2017-11-21
申请号:CN201710630329.X
申请日:2017-07-28
Applicant: 中南大学
CPC classification number: G06Q10/04 , G06F17/30598 , G06F17/30705 , G06K9/6223 , G06N3/08 , G06Q50/08
Abstract: 本发明提供了一种智能环境运载机器人识别楼层的多自然传感参数融合处理方法,利用成本较低的温度、湿度、气压传感器搜集数据,建立数据库,针对气压随高度变化的特性,采用大数据处理技术,利用CPSO优化的ELMAN神经网络模型完成预测模型的建立,实现运载机器人在各种环境下的电梯楼层自适应辨识,有效解决了不同环境下同一高度气压值变动导致楼层辨识不准的情况。此外,本发明无需对电梯内部或外部进行改造,具有极高的普适性。
-
公开(公告)号:CN107368076A
公开(公告)日:2017-11-21
申请号:CN201710640558.X
申请日:2017-07-31
Applicant: 中南大学
IPC: G05D1/02
CPC classification number: G05D1/0221
Abstract: 本发明公开了一种智能环境下机器人运动路径深度学习控制规划方法,该方法包括:步骤1:对运载机器人运载区域构建全局地图三维坐标系,获取在全局地图三维坐标系下的可行走区域坐标;步骤2:获取训练样本集;步骤3:构建运载机器人的全局静态路径规划模型;步骤4:将运输任务中的起点和终点坐标输入至基于模糊神经网络的全局静态路径规划模型,获得对应的运载机器人最优规划路径。本发明通过分别建立全局静态路径规划模型和局部动态避障规划模型,利用深度学习的极强的非线性拟合特性,快速的找到全局最优路径,避免了常见的路径规划中陷入局部最优的问题。
-
公开(公告)号:CN107392317A
公开(公告)日:2017-11-24
申请号:CN201710631220.8
申请日:2017-07-28
Applicant: 中南大学
Abstract: 本发明公开了一种智能环境运载机器人识别楼层的神经网络群体混合计算方法,该方法通过对采集的各种数据按照天气模式聚类后,再按照不同的天气模式,对波动的压力传感器读数进行FIR滤波处理后,再将其传输至数据分析模块进行神经网络学习,大大提高了楼层辨识的准确性、实时性。极大改善了压力传感器获取的数据的震荡的问题,极大提高了高度数据信号分析的精度;具有普遍适应性,能够应对各种海拔高度,各种地理位置,各种天气条件下的电梯楼层识别;并不局限于运载机器人在电梯内使用,还可以在楼道中进行楼层估计,也能应用于高空作业、无人机等领域。
-
-
-
-
-
-
-
-
-