-
公开(公告)号:CN113032751B
公开(公告)日:2022-07-01
申请号:CN202110320501.8
申请日:2021-03-25
Applicant: 中南大学
IPC: G06F21/31 , G06K9/62 , G06V10/74 , G06N3/08 , G06F3/0488
Abstract: 本发明公开了一种基于移动设备击键特征的身份识别方法、装置、设备及介质,包括:对身份待识别的用户,从其登录移动设备的击键过程中提取击键特征:飞跃时间序列、滞留时间序列和触点坐标序列,并计算每个击键特征与注册时该击键特征之间的方差、欧拉距离和皮尔逊相关系数,得到用户登录的9个特征参数;将上述得到的9个特征参数输入至预先训练好的身份识别模型中,根据模型输出判断当前登录用户的身份是否合法;其中,所述身份识别模型采用前馈神经网络并基于若干正负样本训练得到,且正负样本分别由合法和非法用户登录时得到的所述9个特征参数构成。
-
公开(公告)号:CN113032751A
公开(公告)日:2021-06-25
申请号:CN202110320501.8
申请日:2021-03-25
Applicant: 中南大学
IPC: G06F21/31 , G06K9/62 , G06N3/08 , G06F3/0488
Abstract: 本发明公开了一种基于移动设备击键特征的身份识别方法、装置、设备及介质,包括:对身份待识别的用户,从其登录移动设备的击键过程中提取击键特征:飞跃时间序列、滞留时间序列和触点坐标序列,并计算每个击键特征与注册时该击键特征之间的方差、欧拉距离和皮尔逊相关系数,得到用户登录的9个特征参数;将上述得到的9个特征参数输入至预先训练好的身份识别模型中,根据模型输出判断当前登录用户的身份是否合法;其中,所述身份识别模型采用前馈神经网络并基于若干正负样本训练得到,且正负样本分别由合法和非法用户登录时得到的所述9个特征参数构成。
-