-
公开(公告)号:CN110472729B
公开(公告)日:2020-05-26
申请号:CN201910712725.6
申请日:2019-08-02
Applicant: 中南大学
Abstract: 本发明提供了一种基于综合CNN‑LSTM的岩爆状态预测方法,包括:根据岩爆状态变量时序数据,进行岩爆状态变量的相空间重构,得到相空间;将所述相空间输入卷积神经网络CNN,得到具有高维特征信息的时间序列;将所述时间序列输入深度学习LSTM模型,进行特征时间序列预测;将所述岩爆状态变量时序数据划分为训练集数据和测试集数据,利用所述训练集数据对CNN‑LSTM模型进行学习训练,提取所述相空间数据演化的时间特征,获得训练好的CNN‑LSTM模型。本发明的方法将CNN表现出的数据特征高表达能力与深度学习LSTM模型在连续性时序数据预测上的优势组合起来进行t+1时刻岩爆状态预测,以降低预测误差,提高预测精度。
-
公开(公告)号:CN110472729A
公开(公告)日:2019-11-19
申请号:CN201910712725.6
申请日:2019-08-02
Applicant: 中南大学
Abstract: 本发明提供了一种基于综合CNN-LSTM的岩爆状态预测方法,包括:根据岩爆状态变量时序数据,进行岩爆状态变量的相空间重构,得到相空间;将所述相空间输入卷积神经网络CNN,得到具有高维特征信息的时间序列;将所述时间序列输入深度学习LSTM模型,进行特征时间序列预测;将所述岩爆状态变量时序数据划分为训练集数据和测试集数据,利用所述训练集数据对CNN-LSTM模型进行学习训练,提取所述相空间数据演化的时间特征,获得训练好的CNN-LSTM模型。本发明的方法将CNN表现出的数据特征高表达能力与深度学习LSTM模型在连续性时序数据预测上的优势组合起来进行t+1时刻岩爆状态预测,以降低预测误差,提高预测精度。
-