-
公开(公告)号:CN101740230B
公开(公告)日:2011-11-23
申请号:CN200910311112.8
申请日:2009-12-09
Applicant: 中南大学 , 湖南业翔晶科新能源有限公司
CPC classification number: Y02E60/13
Abstract: 一种超级电容电池用复合碳负极材料,包括核层、壳层结构,所述壳层占核层与壳层总质量的10%-40%;所述核层由表面纳米化处理后的石墨类材料构成;所述壳层由多孔碳材料构成。所述核层的表面纳米化处理是在选自天然石墨、人造石墨或中间相碳微球材料的表面原位形成纳米碳纤维、碳纳米管或纳米孔洞;所述的多孔碳材料由碳机体上分布有微孔的三维孔结构构成。所述壳层中掺杂有金属元素。本发明组分配方合理、所制备的材料具有核壳结构,且掺杂有金属元素,同时兼具良好的双电层储能与锂离子脱/嵌储能特性、可有效提高锂离子电池的大倍率性能及功率密度;可满足超级电容电池对负极材料的锂离子储能和双电层储能的双重要求;可作为高性能锂离子电池负极;具有良好的大倍率充放电性能;产业化前景良好。
-
公开(公告)号:CN101763944B
公开(公告)日:2011-07-20
申请号:CN200910311114.7
申请日:2009-12-09
Applicant: 中南大学 , 湖南业翔晶科新能源有限公司
Abstract: 本发明涉及一种高倍率锂离子电池以及超级电容电池用碳类复合负极材料的制备方法。所述制备方法包括具有大孔-中孔-微孔三维层次孔多孔炭外壳在表面纳米化内核上的包覆、金属颗粒在外壳表面的掺杂以及低电位化处理三个步骤。通过模板法实现在内核上包覆三维层次孔多孔炭外壳;通过浸渍、化学镀以及物理混合方法实现金属颗粒在外壳表面的掺杂;通过电化学预掺锂实现对复合碳材料进行低电位化处理。本发明工艺方法简单、操作方便、所制备的材料具有核-壳结构,且掺杂有金属元素,同时兼具良好的双电层储能与锂离子脱/嵌储能特性、可有效提高锂离子电池的大倍率性能及功率密度;可满足超级电容电池对负极材料的锂离子储能和双电层储能的双重要求;可作为高性能锂离子电池负极;具有良好的大倍率充放电性能;产业化前景良好。
-
公开(公告)号:CN102130323B
公开(公告)日:2013-02-13
申请号:CN201110036941.7
申请日:2011-02-12
Applicant: 中南大学
Abstract: 一种含多孔聚合物弹性体的锂离子电池薄膜负极,包括铜箔集流体、表面涂层;所述表面涂层均匀涂覆在所述铜箔集流体表面;所述表面涂层由高容量纳米粒子复合在定向多孔聚合物弹性体中构成。所述高容量纳米粒子通过抽滤、滚压、电泳装载到多孔聚合物弹性体的孔中、并涂覆在铜箔集流体上。所述多孔聚合物弹性体,指的是多孔聚噻吩、多孔聚吡咯或多孔聚苯胺中的一种。本发明所制备的薄膜负极,可有效阻止高容量纳米粒子在充放电过程中由于体积膨胀导致粉化、二次团聚导致的容量衰减,改善纳米粒子的循环性能;同时,聚合物的多孔性可保证锂离子在负极中快速传输、从而实现可快速进行充放电的目的;本发明所获得负极,无需压片、成膜,即可直接用于电池装配中;适于工业化生产。
-
公开(公告)号:CN102130329A
公开(公告)日:2011-07-20
申请号:CN201110036854.1
申请日:2011-02-12
Applicant: 中南大学
Abstract: 一种含多孔聚合物弹性体的锂离子电池薄膜负极制备方法,是将表面接枝处理后高容量纳米粒子采用抽滤、滚压、电泳的方式装载到具有定向纳米通道高导电率聚合物中并涂覆在集流体铜箔上;本发明方法所制备的锂离子电池薄膜负极,由于高容量纳米粒子装载在高弹性聚合物的纳米通道中,这样可大大抑制由于高容量纳米粒子在充放电过程中体积膨胀、粉化、二次团聚所导致的容量衰减,所制备薄膜负极不仅保持了纳米粒子高容量的优点,还具有优异的循环性能;另外,聚合物弹性体中的多纳米通道,还能保证离子传输的快速并缩短传输途径,从而可使得该负极的倍率性能优良。聚合物弹性体的弹性特征,使活性物质嵌脱锂过程中的体积变化不会影响涂覆层与流体之间的电接触性能。适于工业化生产。
-
公开(公告)号:CN102163720A
公开(公告)日:2011-08-24
申请号:CN201110036845.2
申请日:2011-02-12
Applicant: 中南大学
IPC: H01M4/58 , H01M4/62 , H01M4/1397
Abstract: 一种锂离子电池用硫化锂-多孔碳复合正极材料及制备方法。所述正极材料由硫化锂和有序多孔碳复合而成,硫化锂在复合材料中的质量分数为20-80%;所述硫化锂存在于多孔碳的孔隙中。所述制备方法包括以下步骤:首先,将有序多孔碳与单质硫在惰性气体保护下进行球磨;然后,将球磨后混合物在145-155℃热处理、使硫充分扩散进入多孔碳中;最后,通过化学或电化学方法,使锂与硫反应生成硫化锂,从而得到本发明正极材料。本发明制备工艺简单,原料来源广泛,所制备的正极材料采用在正极中预嵌锂的方式,无需使用金属锂作为负极,可以采用碳负极、硅负极等,提高安全性能和可组装性;导电性好、容量高、循环性能好;应用前景广阔适合工业化生产。
-
公开(公告)号:CN102142553A
公开(公告)日:2011-08-03
申请号:CN201110036864.5
申请日:2011-02-12
Applicant: 中南大学
IPC: H01M4/38 , H01M4/1395
Abstract: 一种具有纳米/微米结构的锡钴碳复合负极材料,其化学式为Snx-Co-Cy,其中x=1-4,y=1-50。其制备方法包括下述步骤:1、制备出纳米级的锡钴碳颗粒;2、将纳米级的锡钴碳颗粒、纳米级可去除模板以及高聚物混合成悬浮液,并造粒;3、将前一步所造粒子热处理,并去除模板剂后,即得本发明负极材料。本发明制备的锡钴碳复合负极材料由纳米级锡钴合金微粒与纳米级碳颗粒构成微米级锡钴碳颗粒,所述纳米级碳颗粒包裹在所述纳米级锡钴合金微粒的外表面;纳米级锡钴合金微粒与纳米级碳颗粒之间存在纳米微孔。本发明所制备的复合材料能量密度高,循环性能优秀,制备工艺简单,原料来源广泛,适合工业化生产。
-
公开(公告)号:CN102130336A
公开(公告)日:2011-07-20
申请号:CN201110036892.7
申请日:2011-02-12
Applicant: 中南大学
IPC: H01M4/583 , H01M4/1393
Abstract: 一种锂离子电池用层次孔结构碳负极材料及制备方法。所述的炭负极材料表面富含丰富的含氧官能团或含氮官能团中的一种,且内部存在由大孔、中孔与小孔构成的层次孔;所述炭材料的制备步骤主要包括前驱体的制备、前驱体的炭化以及模板剂的去除。本发明制备的锂离子电池负极材料能量密度高、循环寿命长;发明工艺方法简单、操作方便、所制备的材料具有层次孔结构、官能团结构及石墨微晶结构,可有效提高锂离子电池的能量密度,产业化前景良好。
-
公开(公告)号:CN102130323A
公开(公告)日:2011-07-20
申请号:CN201110036941.7
申请日:2011-02-12
Applicant: 中南大学
Abstract: 一种含多孔聚合物弹性体的锂离子电池薄膜负极,包括铜箔集流体、表面涂层;所述表面涂层均匀涂覆在所述铜箔集流体表面;所述表面涂层由高容量纳米粒子复合在定向多孔聚合物弹性体中构成。所述高容量纳米粒子通过抽滤、滚压、电泳装载到多孔聚合物弹性体的孔中、并涂覆在铜箔集流体上。所述多孔聚合物弹性体,指的是多孔聚噻吩、多孔聚吡咯或多孔聚苯胺中的一种。本发明所制备的薄膜负极,可有效阻止高容量纳米粒子在充放电过程中由于体积膨胀导致粉化、二次团聚导致的容量衰减,改善纳米粒子的循环性能;同时,聚合物的多孔性可保证锂离子在负极中快速传输、从而实现可快速进行充放电的目的;本发明所获得负极,无需压片、成膜,即可直接用于电池装配中;适于工业化生产。
-
公开(公告)号:CN102130336B
公开(公告)日:2013-05-29
申请号:CN201110036892.7
申请日:2011-02-12
Applicant: 中南大学
IPC: H01M4/583 , H01M4/1393
Abstract: 一种锂离子电池用层次孔结构碳负极材料及制备方法。所述的炭负极材料表面富含丰富的含氧官能团或含氮官能团中的一种,且内部存在由大孔、中孔与小孔构成的层次孔;所述炭材料的制备步骤主要包括前驱体的制备、前驱体的炭化以及模板剂的去除。本发明制备的锂离子电池负极材料能量密度高、循环寿命长;发明工艺方法简单、操作方便、所制备的材料具有层次孔结构、官能团结构及石墨微晶结构,可有效提高锂离子电池的能量密度,产业化前景良好。
-
公开(公告)号:CN102130326B
公开(公告)日:2013-05-08
申请号:CN201110036873.4
申请日:2011-02-12
Applicant: 中南大学
IPC: H01M4/133 , H01M4/1393 , H01G9/042
CPC classification number: Y02E60/13
Abstract: 一种高容量官能团化炭素层状电极及制备方法。所述电极包括集流体、基体膜、表面浸渍涂层,所述基体膜涂覆在所述集流体上;在所述基体膜的外表面,依次浸渍有含羰基(C=O)官能团炭素粉末及含胺(-NH2)官能团炭素粉末的表面浸渍涂层。其制备方法包括炭素粉末的选择与官能团化、含炭素粉末料浆的配制以及料浆的分层涂覆等步骤。本发明所制备的炭素层状独特层状结构,可以储存更多的电容容量,可以保证大倍率下的高容量,循环寿命长;可作高功率超级电容器的电极,也可用作大倍率锂离子电池的电极;本发明制备工艺简单,原料来源广泛,制备成本低,适于工业化实际应用中。
-
-
-
-
-
-
-
-
-