一种基于自监督对比学习的屏幕翻拍翻录鲁棒检测方法

    公开(公告)号:CN116229148B

    公开(公告)日:2023-10-03

    申请号:CN202310003513.7

    申请日:2023-01-03

    Applicant: 中南大学

    Abstract: 本发明公开一种基于自监督对比学习的屏幕翻拍翻录鲁棒检测方法,本方法设计了自监督标注机制,首先对屏幕翻拍翻录图像数据集进行增广,在完成图像增广后,以自监督标注的方式构建正例样本对集合和负例样本对集合,用来基于对比学习的特征编码器训练。其中正常图像和屏幕翻拍翻录图像标注为负例对,通过拉大负例对的特征距离来确保屏幕翻拍翻录图像和正常图像的可辨识性;同一屏幕翻拍翻录图像在不同攻击后得到图像之间标注为正例对,不同原图之间标注为正例对,通过缩小正例对的特征距离来确保屏幕翻拍翻录图像在不同攻击后检测的鲁棒性。最终构建一个端对端网络用于判断图像是否为屏幕翻拍翻录图像。本方法可有效鉴别是否发生数据泄漏。

    一种基于自监督对比学习的屏幕翻拍翻录鲁棒检测方法

    公开(公告)号:CN116229148A

    公开(公告)日:2023-06-06

    申请号:CN202310003513.7

    申请日:2023-01-03

    Applicant: 中南大学

    Abstract: 本发明公开一种基于自监督对比学习的屏幕翻拍翻录鲁棒检测方法,本方法设计了自监督标注机制,首先对屏幕翻拍翻录图像数据集进行增广,在完成图像增广后,以自监督标注的方式构建正例样本对集合和负例样本对集合,用来基于对比学习的特征编码器训练。其中正常图像和屏幕翻拍翻录图像标注为负例对,通过拉大负例对的特征距离来确保屏幕翻拍翻录图像和正常图像的可辨识性;同一屏幕翻拍翻录图像在不同攻击后得到图像之间标注为正例对,不同原图之间标注为正例对,通过缩小正例对的特征距离来确保屏幕翻拍翻录图像在不同攻击后检测的鲁棒性。最终构建一个端对端网络用于判断图像是否为屏幕翻拍翻录图像。本方法可有效鉴别是否发生数据泄漏。

Patent Agency Ranking