一种步态特征提取方法及基于步态特征的行人身份识别方法

    公开(公告)号:CN110084156A

    公开(公告)日:2019-08-02

    申请号:CN201910295000.1

    申请日:2019-04-12

    Applicant: 中南大学

    Abstract: 本发明公开了一种步态特征提取方法及基于步态特征的行人身份识别方法,步态特征提取方法包括以下步骤:步骤A:对步态图像序列中的每一帧步态图像,获取其中行人所在区域,作为感兴趣区域;步骤B:分割感兴趣区域中的行人目标;步骤C:获取每一帧步态图像中行人目标的关节点位置信息;步骤D:基于该步态图像序列的各帧步态图像中行人目标的关节点位置信息,进行步态周期检测;步骤E:根检测出的步态周期,合成该步态图像序列对应的步态能量图,作为步态特征。基于提取出的步态特征利用判别网络和对比网络对行人目标进行判断或识别。本发明较好解决了步态识别领域小样本分类中样本量不足的问题,且算法实时性好。

    一种基于长短时记忆网络的步态识别方法

    公开(公告)号:CN109902646A

    公开(公告)日:2019-06-18

    申请号:CN201910173857.6

    申请日:2019-03-08

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于长短时记忆网络的步态识别方法,包括:步骤1.1,获取已知身份标签的新个体的行走视频;步骤1.2,将行走视频拆分成Mi张连续步态图像,对Mi张连续步态图像进行预处理得到步态图片序列;步骤1.3,从步态图片序列中截取T张连续步态图像,作为步态图片序列训练样本;步骤2,以新个体的步态图片序列训练样本为输入、相应的身份标签为输出,训练长短时记忆网络得到身份识别模型;步骤3,获取待识别个体的行走视频,按步骤1.2和步骤1.3获取待识别个体的步态图片序列测试样本,并输入到身份识别模型中,从而得到待识别个体的身份标签。本发明有效利用步态图片序列的前后时序关系,提高对待识别个体身份识别的准确性。

    一种步态特征提取方法及基于步态特征的行人身份识别方法

    公开(公告)号:CN110084156B

    公开(公告)日:2021-01-29

    申请号:CN201910295000.1

    申请日:2019-04-12

    Applicant: 中南大学

    Abstract: 本发明公开了一种步态特征提取方法及基于步态特征的行人身份识别方法,步态特征提取方法包括以下步骤:步骤A:对步态图像序列中的每一帧步态图像,获取其中行人所在区域,作为感兴趣区域;步骤B:分割感兴趣区域中的行人目标;步骤C:获取每一帧步态图像中行人目标的关节点位置信息;步骤D:基于该步态图像序列的各帧步态图像中行人目标的关节点位置信息,进行步态周期检测;步骤E:根检测出的步态周期,合成该步态图像序列对应的步态能量图,作为步态特征。基于提取出的步态特征利用判别网络和对比网络对行人目标进行判断或识别。本发明较好解决了步态识别领域小样本分类中样本量不足的问题,且算法实时性好。

Patent Agency Ranking