-
公开(公告)号:CN114677310A
公开(公告)日:2022-06-28
申请号:CN202210396331.6
申请日:2022-04-15
Applicant: 中南大学
Abstract: 本发明提供了一种延迟增强磁共振图像的降噪与重建方法及系统,包括如下步骤:使用DnCNN对DE‑MRI图像进行预处理;使用SRGAN的生成器和鉴别器相互对抗,交替训练生成质量更好的图像,采用梯度惩罚解决梯度消失的问题;在原SRGAN损失函数的基础上添加WGAN损失函数监测梯度下降,提高图像重建的准确性。本发明首先对DE‑MRI图像进行DnCNN降噪,得到高峰值信噪比的图像,作为SRGAN训练图像,增加DE‑CMR训练集,增强了模型的泛化能力;其次,通过最小化Wasserstein距离,并使用梯度惩罚,使生成图像的分布与真实图像的分布接近,避免了训练的消失和爆炸,加快了模型的训练速度;最后,添加WGAN损失函数提高图像重建的准确性,使图像重建质量明显提高。
-
公开(公告)号:CN114677310B
公开(公告)日:2024-12-03
申请号:CN202210396331.6
申请日:2022-04-15
Applicant: 中南大学
IPC: G06T5/70 , G06T5/60 , G06T11/00 , G06N3/0464 , G06N3/045 , G06N3/0475 , G06N3/094
Abstract: 本发明提供了一种延迟增强磁共振图像的降噪与重建方法及系统,包括如下步骤:使用DnCNN对DE‑MRI图像进行预处理;使用SRGAN的生成器和鉴别器相互对抗,交替训练生成质量更好的图像,采用梯度惩罚解决梯度消失的问题;在原SRGAN损失函数的基础上添加WGAN损失函数监测梯度下降,提高图像重建的准确性。本发明首先对DE‑MRI图像进行DnCNN降噪,得到高峰值信噪比的图像,作为SRGAN训练图像,增加DE‑CMR训练集,增强了模型的泛化能力;其次,通过最小化Wasserstein距离,并使用梯度惩罚,使生成图像的分布与真实图像的分布接近,避免了训练的消失和爆炸,加快了模型的训练速度;最后,添加WGAN损失函数提高图像重建的准确性,使图像重建质量明显提高。
-