基于虚拟CRH380A模型和深度学习的TEDS故障检测方法

    公开(公告)号:CN112907734B

    公开(公告)日:2023-04-11

    申请号:CN202110253132.5

    申请日:2021-03-09

    Applicant: 中南大学

    Abstract: 基于虚拟CRH380A模型和深度学习的TEDS故障检测方法,包括以下步骤:步骤一、拍摄TEDS故障图片以及生成渲染故障图片;步骤二、生成对抗网络转换图片;步骤三、构建训练样本集:将超逼真故障图片与少量的真实故障图片进行混合,使用标记软件对图片进行样本标记,构建训练样本集;步骤四、训练目标检测模型,构建故障检测深度模型;步骤五、进行TEDS故障检测和判定。本发明利用神经网络以及虚拟模型建立EMU动态故障的海量多维特征识别模型库实现高准确度的EMU设备故障的自动检测能力;通过此项目来支持TEDS系统对EMU设备故障的自动检测能力,预估计能使全国铁路动车段能节省人工检测费。

    基于虚拟CRH380A模型和深度学习的TEDS故障检测方法

    公开(公告)号:CN112907734A

    公开(公告)日:2021-06-04

    申请号:CN202110253132.5

    申请日:2021-03-09

    Applicant: 中南大学

    Abstract: 基于虚拟CRH380A模型和深度学习的TEDS故障检测方法,包括以下步骤:步骤一、拍摄TEDS故障图片以及生成渲染故障图片;步骤二、生成对抗网络转换图片;步骤三、构建训练样本集:将超逼真故障图片与少量的真实故障图片进行混合,使用标记软件对图片进行样本标记,构建训练样本集;步骤四、训练目标检测模型,构建故障检测深度模型;步骤五、进行TEDS故障检测和判定。本发明利用神经网络以及虚拟模型建立EMU动态故障的海量多维特征识别模型库实现高准确度的EMU设备故障的自动检测能力;通过此项目来支持TEDS系统对EMU设备故障的自动检测能力,预估计能使全国铁路动车段能节省人工检测费。

Patent Agency Ranking