-
公开(公告)号:CN113430385B
公开(公告)日:2022-05-20
申请号:CN202110520543.6
申请日:2021-05-13
Applicant: 中南大学
Abstract: 本发明属于冶金技术领域,具体涉及一种从硫化砷渣中回收硫铼及砷无害化处置的方法。该方法包括氧压酸浸、热过滤、选择性沉砷、吸附铼4个步骤。本方法使砷优先沉淀,沉淀过程中控制好反应条件,使得砷沉淀过程中铼的损失非常小,从而使砷与铼分离,分离后的溶液通过对树脂进行改善,提高铼的吸附效率,从而获得高纯铼产品。与其他方法相比,本发明解决了砷与有价金属铜铼分离无法彻底的难题,并高效实现了砷的稳定化。本发明方法可从硫化砷渣中回收硫铼,还能够对砷无害化处置,具有环保、经济、节能、高效、资源回收率高等优点。
-
公开(公告)号:CN115246653A
公开(公告)日:2022-10-28
申请号:CN202210815833.8
申请日:2022-07-12
Applicant: 中南大学
IPC: C01F17/224 , C01F17/10 , B82Y40/00
Abstract: 本发明涉及稀土材料,具体涉及一种纳米氧化镝及其制备方法与应用。纳米氧化镝的制备方法包括将可溶性镝盐溶液和碳酸盐‑柠檬酸溶液混合,生成碳酸镝沉淀;将反应体系进行水热反应生成氧化镝前驱体;固液分离,洗涤,干燥,得前驱体产物;煅烧得纳米氧化镝。本发明纳米氧化镝粉体分散性好、结晶度好、粒径分布窄、比表面积大,满足高科技产品如多层陶瓷电容器、MRI造影剂等的使用要求。
-
公开(公告)号:CN113684365B
公开(公告)日:2022-10-18
申请号:CN202111008179.1
申请日:2021-08-29
Applicant: 中南大学
Abstract: 本发明公开了一种从黑铜泥中回收铜及直接固化砷的方法。本发明仅需一道工序即可完成铜砷分离,砷固化率最高可达91.09%,砷固化物稳定,毒性浸出液中砷浓度最低可至1.42mg/L。铜的浸出率最高可达99.02%,电积铜纯度可达4N级。有效解决了工艺复杂、成本高、金属回收率低及固化物不稳定的问题。
-
公开(公告)号:CN113430385A
公开(公告)日:2021-09-24
申请号:CN202110520543.6
申请日:2021-05-13
Applicant: 中南大学
Abstract: 本发明属于冶金技术领域,具体涉及一种从硫化砷渣中回收硫铼及砷无害化处置的方法。该方法包括氧压酸浸、热过滤、选择性沉砷、吸附铼4个步骤。本方法使砷优先沉淀,沉淀过程中控制好反应条件,使得砷沉淀过程中铼的损失非常小,从而使砷与铼分离,分离后的溶液通过对树脂进行改善,提高铼的吸附效率,从而获得高纯铼产品。与其他方法相比,本发明解决了砷与有价金属铜铼分离无法彻底的难题,并高效实现了砷的稳定化。本发明方法可从硫化砷渣中回收硫铼,还能够对砷无害化处置,具有环保、经济、节能、高效、资源回收率高等优点。
-
公开(公告)号:CN115246653B
公开(公告)日:2023-10-17
申请号:CN202210815833.8
申请日:2022-07-12
Applicant: 中南大学
IPC: C01F17/224 , C01F17/10 , B82Y40/00
Abstract: 本发明涉及稀土材料,具体涉及一种纳米氧化镝及其制备方法与应用。纳米氧化镝的制备方法包括将可溶性镝盐溶液和碳酸盐‑柠檬酸溶液混合,生成碳酸镝沉淀;将反应体系进行水热反应生成氧化镝前驱体;固液分离,洗涤,干燥,得前驱体产物;煅烧得纳米氧化镝。本发明纳米氧化镝粉体分散性好、结晶度好、粒径分布窄、比表面积大,满足高科技产品如多层陶瓷电容器、MRI造影剂等的使用要求。
-
公开(公告)号:CN113684365A
公开(公告)日:2021-11-23
申请号:CN202111008179.1
申请日:2021-08-29
Applicant: 中南大学
Abstract: 本发明公开了一种从黑铜泥中回收铜及直接固化砷的方法。本发明仅需一道工序即可完成铜砷分离,砷固化率最高可达91.09%,砷固化物稳定,毒性浸出液中砷浓度最低可至1.42mg/L。铜的浸出率最高可达99.02%,电积铜纯度可达4N级。有效解决了工艺复杂、成本高、金属回收率低及固化物不稳定的问题。
-
-
-
-
-