一种多波段图像的自监督学习融合方法

    公开(公告)号:CN111915545A

    公开(公告)日:2020-11-10

    申请号:CN202010784272.0

    申请日:2020-08-06

    Applicant: 中北大学

    Abstract: 本发明涉及多波段图像融合方法,具体为基于多判别器生成对抗网络的多波段图像自监督融合方法,本方法按如下步骤进行:设计并构建生成对抗网络,网络由一个生成器和多个判别器组成,且标签图像为多波段源图像自身;生成器网络结构采用构思的特征增强模块、特征融合模块两部分组成,通过生成器和判别器的动态平衡训练得到一个生成模型并得到多波段图像融合结果。本发明实现了多波段图像端到端自监督融合的神经网络,结果具有更好的清晰度、信息量,细节信息更丰富,更符合人眼视觉特性。

    一种多波段图像的自监督学习融合方法

    公开(公告)号:CN111915545B

    公开(公告)日:2022-07-05

    申请号:CN202010784272.0

    申请日:2020-08-06

    Applicant: 中北大学

    Abstract: 本发明涉及多波段图像融合方法,具体为基于多判别器生成对抗网络的多波段图像自监督融合方法,本方法按如下步骤进行:设计并构建生成对抗网络,网络由一个生成器和多个判别器组成,且标签图像为多波段源图像自身;生成器网络结构采用构思的特征增强模块、特征融合模块两部分组成,通过生成器和判别器的动态平衡训练得到一个生成模型并得到多波段图像融合结果。本发明实现了多波段图像端到端自监督融合的神经网络,结果具有更好的清晰度、信息量,细节信息更丰富,更符合人眼视觉特性。

Patent Agency Ranking