-
公开(公告)号:CN110473206A
公开(公告)日:2019-11-19
申请号:CN201910670324.9
申请日:2019-07-24
Applicant: 东南大学
Abstract: 本发明公开了一种基于超体素与测度学习的弥散张量图像分割方法,包括以下步骤:首先,对弥散张量图像,计算描述每个体素水分子弥散的几何特征与方向特征。然后,在弥散张量图像的组织区域均匀采样种子点,结合位置、几何与方向特征,采用局部空间模糊聚类方法生成超体素。接着,在谱聚类的框架下,建立测度学习与聚类的优化模型,对目标函数采用迭代交替求解,实现超体素的分类。最后,将超体素的分类结果映射回图像空间,从而获得弥散张量图像的分割结果。本发明方法可以高效、稳定地获得精准的组织分割,对于大脑神经影像分析、疾病诊断与大脑认知研究等具有科学意义。
-
公开(公告)号:CN114287908A
公开(公告)日:2022-04-08
申请号:CN202111645025.3
申请日:2021-12-29
Applicant: 东南大学
IPC: A61B5/055
Abstract: 本发明提供了一种多通带图卷积融合的脑连接分类方法,通过多通带特征融合达到脑连接分类的目的。本发明主要包括全脑功能连接影像特征提取和多通带图卷积融合网络两个主要部分。针对所有受试者功能性核磁共振数据,本发明在现有的图卷积网络的基础上,引入图散射卷积融合低通滤波和带通滤波,实现多通带特征学习。并且,进一步采用残差过滤模块和对抗生成模块降低噪声的影响,提高对干扰信息的鲁棒性,提取出稳定、高区分度的特征,进而实现脑连接分类目标任务。
-
公开(公告)号:CN110599461A
公开(公告)日:2019-12-20
申请号:CN201910772126.3
申请日:2019-08-21
Applicant: 东南大学
Abstract: 本发明公开了一种基于子空间特征学习的丘脑功能分区方法。首先,使用弥散张量成像进行纤维追踪以获得活体大脑内部结构连接信息,使用精细皮层分区针对复杂非线性的丘脑皮层特征提取形成结构连接特征。然后,使用深度子空间网络以及增加的自表达特性学习特征的隐藏子空间映射,提取低维子空间特征。最后,对体素特征加以空间约束降低噪声的影响,更好地反映空间拓扑结构,丰富对空间信息的提取,构建亲和度矩阵使用归一化割方法获得功能分区。本发明方法能够降低噪声的影响,并且能够更好地反映体素空间的拓扑结构,丰富对空间信息的提取,可以高效地获得丘脑功能分区。
-
公开(公告)号:CN114287910A
公开(公告)日:2022-04-08
申请号:CN202111648999.7
申请日:2021-12-29
Applicant: 东南大学
IPC: A61B5/055
Abstract: 本发明提出了一种基于多阶段图卷积融合的脑功能连接分类方法,通过学习样本在不同子空间下的特征并利用图卷积融合达到脑功能连接分类的目的。首先,对原始的静息态功能磁共振数据进行处理,提取各样本显著的脑功能连接的特征作为各样本的原始特征;其次,利用深度子空间聚类理论提取原始特征在不同子空间维度下的特征;此外,利用数据多阶段的自表达属性自学习出可以更好表示样本间关系的拓扑图结构;最后,利用学习到的多阶段特征和拓扑图结构,采用图卷积融合的方式,输出分类结果。本发明不仅学习了多阶段的特征,并对其进行了有效融合,为脑功能连接的分类决策提供更为全面、不同阶段互补的信息,利用较少的监督信息即能取得良好的分类结果。
-
公开(公告)号:CN110599461B
公开(公告)日:2023-04-07
申请号:CN201910772126.3
申请日:2019-08-21
Applicant: 东南大学
IPC: G06T7/00 , G06V10/762 , G06V10/774 , G06V10/40
Abstract: 本发明公开了一种基于子空间特征学习的丘脑功能分区方法。首先,使用弥散张量成像进行纤维追踪以获得活体大脑内部结构连接信息,使用精细皮层分区针对复杂非线性的丘脑皮层特征提取形成结构连接特征。然后,使用深度子空间网络以及增加的自表达特性学习特征的隐藏子空间映射,提取低维子空间特征。最后,对体素特征加以空间约束降低噪声的影响,更好地反映空间拓扑结构,丰富对空间信息的提取,构建亲和度矩阵使用归一化割方法获得功能分区。本发明方法能够降低噪声的影响,并且能够更好地反映体素空间的拓扑结构,丰富对空间信息的提取,可以高效地获得丘脑功能分区。
-
公开(公告)号:CN110473206B
公开(公告)日:2023-03-21
申请号:CN201910670324.9
申请日:2019-07-24
Applicant: 东南大学
Abstract: 本发明公开了一种基于超体素与测度学习的弥散张量图像分割方法,包括以下步骤:首先,对弥散张量图像,计算描述每个体素水分子弥散的几何特征与方向特征。然后,在弥散张量图像的组织区域均匀采样种子点,结合位置、几何与方向特征,采用局部空间模糊聚类方法生成超体素。接着,在谱聚类的框架下,建立测度学习与聚类的优化模型,对目标函数采用迭代交替求解,实现超体素的分类。最后,将超体素的分类结果映射回图像空间,从而获得弥散张量图像的分割结果。本发明方法可以高效、稳定地获得精准的组织分割,对于大脑神经影像分析、疾病诊断与大脑认知研究等具有科学意义。
-
-
-
-
-