-
公开(公告)号:CN107103359A
公开(公告)日:2017-08-29
申请号:CN201710364932.8
申请日:2017-05-22
Applicant: 东南大学
Abstract: 本发明提出一种基于卷积神经网络的大服务系统在线可靠性预测方法,包括如下步骤:数据预处理,对任意响应时间参数时间序列,以及吞吐量参数时间序列进行归一化处理;motifs发现,通过k‑means聚类算法寻找吞吐量,响应时间和可靠性三组参数中的motifs;使用motifs进行标注;卷积神经网络模型的训练;使用最近邻时间段内相应时间和吞吐量相应参数时间序列带入到训练好的CNN模型中,得到组件系统的在线可靠性时间序列预测结果。本发明能够预测一个有效的时间周期内的时间序列的可靠性,基于此可以优化选择系统构建过程中的服务选择同时还可以根据预测的结果及时发现和替换可能会出错的组件,提高系统的可靠性能。