-
公开(公告)号:CN109064396B
公开(公告)日:2023-04-07
申请号:CN201810666177.3
申请日:2018-06-22
Applicant: 东南大学
IPC: G06T3/40
Abstract: 本发明公开了一种基于深度成分学习网络的单幅图像超分辨率重建方法,包括:扩充训练样本图像并进行区域抽取以及退化操作,得到对应的高分辨率和低分辨率图像训练集;构建一个具有成分学习结构的深层网络,该网络先对输入的低分辨率图像进行全局成分分解,再利用从中提取的残差成分预测其在高分辨率空间的对应图像;在训练集上使用批处理随机梯度下降法和反向传播算法对构建的深度成分网络进行迭代训练,得到权值优化后的模型;利用训练好的成分网络重建低分辨率图像;将重建结果恢复到原先的彩色空间,得到超分辨率重建的最终输出。本发明方法不仅能够提升重建后超分辨率图像的质量,还能提高模型的运算速度。
-
公开(公告)号:CN107248140A
公开(公告)日:2017-10-13
申请号:CN201710287726.1
申请日:2017-04-27
Applicant: 东南大学
CPC classification number: G06T3/4053 , G06K9/6256 , G06K9/6268
Abstract: 本发明公开了一种基于双向对齐稀疏表示的单幅图像超分辨率重建方法,包括如下步骤:(1)读入一幅彩色低分辨率图像,将该图像由RGB彩色空间转换到YCbCr彩色空间;(2)利用双三次插值法将图像初步转化到目标大小,然后着重对转化后图像的亮度分量进行基于双向对齐稀疏表示的超分辨率重建建模操作,最后通过迭代收缩阈值算法对重建模型迭代求解,得到高分辨率图像亮度分量的最优估计值;(3)将图像从YCbCr彩色空间转换到RGB彩色空间,得到超分辨率重建的最终输出。本发明方法不仅能够有效提升重建后的图像质量,还在鲁棒性方面优于传统的方法。
-
公开(公告)号:CN109064396A
公开(公告)日:2018-12-21
申请号:CN201810666177.3
申请日:2018-06-22
Applicant: 东南大学
IPC: G06T3/40
CPC classification number: G06T3/4053 , G06T3/4023 , G06T3/4046
Abstract: 本发明公开了一种基于深度成分学习网络的单幅图像超分辨率重建方法,包括:扩充训练样本图像并进行区域抽取以及退化操作,得到对应的高分辨率和低分辨率图像训练集;构建一个具有成分学习结构的深层网络,该网络先对输入的低分辨率图像进行全局成分分解,再利用从中提取的残差成分预测其在高分辨率空间的对应图像;在训练集上使用批处理随机梯度下降法和反向传播算法对构建的深度成分网络进行迭代训练,得到权值优化后的模型;利用训练好的成分网络重建低分辨率图像;将重建结果恢复到原先的彩色空间,得到超分辨率重建的最终输出。本发明方法不仅能够提升重建后超分辨率图像的质量,还能提高模型的运算速度。
-
-