一种适用于神经网络的乘加计算方法和计算电路

    公开(公告)号:CN109344964A

    公开(公告)日:2019-02-15

    申请号:CN201810894109.2

    申请日:2018-08-08

    Applicant: 东南大学

    Abstract: 本发明提出一种适用于神经网络的乘加计算方法和计算电路,涉及模拟集成电路技术领域,实现了低功耗、高速度完成神经网络大规模乘加计算。乘加计算电路包括乘法计算电路阵列和累加计算电路。乘法计算电路阵列由M组乘法计算电路组成,每组乘法计算电路由一个乘法阵列单元和八个选择移位单元组成,采用片上训练实时量化乘法阵列单元阶数,为选择移位单元提供共享输入,实现运算速率的提高及功耗的降低;累加计算电路由延时累加电路、TDC转换电路和相加移位电路串联构成。延时累加电路包含8条可控延时链,动态控制迭代次数,在时间域内对数据多次累加,满足不同网络层计算规模的差异性,节省硬件存储空间、降低计算复杂度、减小数据调度。

    基于实时场景下语音信噪比预分级的卷积神经网络计算电路

    公开(公告)号:CN110600019B

    公开(公告)日:2022-02-15

    申请号:CN201910862959.9

    申请日:2019-09-12

    Applicant: 东南大学

    Abstract: 本发明公开了基于实时场景下语音信噪比预分级的卷积神经网络计算电路,属于计算、推算、计数的技术领域。在传统的“语音特征提取+卷积计算识别输出”的语音识别网络电路工作模式基础上,增设动态实时语音信噪比检测模块。动态实时语音信噪比检测模块通过智能感知计算实时输出当前语音场景下的电路工作模式控制信号,并动态调节后续位宽可控的卷积网络计算模块的数据运算位宽大小以及自适应语音特征提取计算模块的快速傅里叶变换的蝶形运算级数,从根本上解决了传统卷积网络计算电路结构存在的场景适应力差、冗余计算多、资源占用过多的问题。

    一种适用于神经网络的乘加计算方法和计算电路

    公开(公告)号:CN109344964B

    公开(公告)日:2020-12-29

    申请号:CN201810894109.2

    申请日:2018-08-08

    Applicant: 东南大学

    Abstract: 本发明提出一种适用于神经网络的乘加计算方法和计算电路,涉及模拟集成电路技术领域,实现了低功耗、高速度完成神经网络大规模乘加计算。乘加计算电路包括乘法计算电路阵列和累加计算电路。乘法计算电路阵列由M组乘法计算电路组成,每组乘法计算电路由一个乘法阵列单元和八个选择移位单元组成,采用片上训练实时量化乘法阵列单元阶数,为选择移位单元提供共享输入,实现运算速率的提高及功耗的降低;累加计算电路由延时累加电路、TDC转换电路和相加移位电路串联构成。延时累加电路包含8条可控延时链,动态控制迭代次数,在时间域内对数据多次累加,满足不同网络层计算规模的差异性,节省硬件存储空间、降低计算复杂度、减小数据调度。

    基于卷积神经网络数据复杂度的动态自适应计算阵列

    公开(公告)号:CN110728303A

    公开(公告)日:2020-01-24

    申请号:CN201910862957.X

    申请日:2019-09-12

    Applicant: 东南大学

    Abstract: 本发明公开了基于卷积神经网络数据复杂度的动态自适应计算阵列,属于计算、推算、计数的技术领域。在原始卷积计算阵列模块基础上,增设动态卷积计算决策模块根据不同的输入数据复杂度选择合适的网络模型。动态卷积计算决策模块包括用于当前网络卷积层预分类计算的预分类层控制器及用于将预分类计算结果与预先设定阈值比较的置信度控制器,置信度控制器输出判别结果决定后续卷积计算阵列是否开启并支持不同尺寸卷积核卷积计算阵列的动态选择。本发明设计简单,可靠性强,动态卷积计算决策模块与其它传统模块协同配合,尽量降低网络的冗余计算,避免计算资源的浪费。

    基于卷积神经网络数据复杂度的动态自适应计算阵列

    公开(公告)号:CN110728303B

    公开(公告)日:2022-03-11

    申请号:CN201910862957.X

    申请日:2019-09-12

    Applicant: 东南大学

    Abstract: 本发明公开了基于卷积神经网络数据复杂度的动态自适应计算阵列,属于计算、推算、计数的技术领域。在原始卷积计算阵列模块基础上,增设动态卷积计算决策模块根据不同的输入数据复杂度选择合适的网络模型。动态卷积计算决策模块包括用于当前网络卷积层预分类计算的预分类层控制器及用于将预分类计算结果与预先设定阈值比较的置信度控制器,置信度控制器输出判别结果决定后续卷积计算阵列是否开启并支持不同尺寸卷积核卷积计算阵列的动态选择。本发明设计简单,可靠性强,动态卷积计算决策模块与其它传统模块协同配合,尽量降低网络的冗余计算,避免计算资源的浪费。

    基于实时场景下语音信噪比预分级的卷积神经网络计算电路

    公开(公告)号:CN110600019A

    公开(公告)日:2019-12-20

    申请号:CN201910862959.9

    申请日:2019-09-12

    Applicant: 东南大学

    Abstract: 本发明公开了基于实时场景下语音信噪比预分级的卷积神经网络计算电路,属于计算、推算、计数的技术领域。在传统的“语音特征提取+卷积计算识别输出”的语音识别网络电路工作模式基础上,增设动态实时语音信噪比检测模块。动态实时语音信噪比检测模块通过智能感知计算实时输出当前语音场景下的电路工作模式控制信号,并动态调节后续位宽可控的卷积网络计算模块的数据运算位宽大小以及自适应语音特征提取计算模块的快速傅里叶变换的蝶形运算级数,从根本上解决了传统卷积网络计算电路结构存在的场景适应力差、冗余计算多、资源占用过多的问题。

Patent Agency Ranking