一种基于分层量化的轻量级神经网络语音关键词识别方法

    公开(公告)号:CN112786021A

    公开(公告)日:2021-05-11

    申请号:CN202110101761.6

    申请日:2021-01-26

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于分层量化的轻量级神经网络语音关键词识别方法,属于计算、推理、计数的技术领域。该系统包括:语音采集模块、特征提取模块、轻量级神网络加速器以及分层8bits量化模块等。轻量级神经网络采用深度可分离卷积神经网络和注意力机制Squeeze‑and‑Excitation,通过将传统卷积替换成深度可分离卷积,降低神经网络的参数量和计算量,通过引入注意力机制,标注卷积过程中不同通道上特征的重要程度,提高模型的识别准确率,通过对神经网络的权重值量化和激活值分层8bits量化,进一步降低模型的计算复杂度和神经网络的参数量,通过设计支持通道分离卷积和传统卷积的加速器,满足对数据带宽的不同需求,从而加速前向推理计算的过程。

    一种基于分层量化的轻量级神经网络语音关键词识别方法

    公开(公告)号:CN112786021B

    公开(公告)日:2024-05-14

    申请号:CN202110101761.6

    申请日:2021-01-26

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于分层量化的轻量级神经网络语音关键词识别方法,属于计算、推理、计数的技术领域。该系统包括:语音采集模块、特征提取模块、轻量级神网络加速器以及分层8bits量化模块等。轻量级神经网络采用深度可分离卷积神经网络和注意力机制Squeeze‑and‑Excitation,通过将传统卷积替换成深度可分离卷积,降低神经网络的参数量和计算量,通过引入注意力机制,标注卷积过程中不同通道上特征的重要程度,提高模型的识别准确率,通过对神经网络的权重值量化和激活值分层8bits量化,进一步降低模型的计算复杂度和神经网络的参数量,通过设计支持通道分离卷积和传统卷积的加速器,满足对数据带宽的不同需求,从而加速前向推理计算的过程。

Patent Agency Ranking