一种真实场景下的多模态数据集的构建方法

    公开(公告)号:CN115019358A

    公开(公告)日:2022-09-06

    申请号:CN202110951389.8

    申请日:2021-08-18

    Applicant: 东南大学

    Abstract: 本发明公开了一种真实场景下的多模态数据集的构建方法,该方法将慕课授课视频构建成包含音频、图像、视频三个模态的数据集;该方法使用多任务卷积神经网络进行人脸检测,使用FaceNet提取说话人特征并构建人脸库,在扫描视频的过程中逐步扩充完善人脸库,通过计算视频截取的人脸与人脸库中人脸的欧氏距离,对视频进行分类,并结合ffmpeg完成批量自动化视频分类和分割,构造出同时带有说话人面部视觉信息和说话人声音信息的数据集。本发明通过采集慕课网授课视频,保证了数据集的音频多样性和场景真实性,有助于训练音频相关深度学习模型的泛化性能;且全自动批处理方法提高了多模态数据集的构建效率。

Patent Agency Ranking