异构GPU集群中加速神经网络训练的流水线并行方法

    公开(公告)号:CN116883229A

    公开(公告)日:2023-10-13

    申请号:CN202310892762.6

    申请日:2023-07-20

    Applicant: 东南大学

    Abstract: 本发明提供了一种异构GPU集群中加速神经网络训练的流水线并行方法,核心机制主要包含三个部分,分别是深度学习模型刻画、同构GPU模型划分及任务放置与异构GPU模型划分及任务放置。本发明首先针对深度学习应用在GPU训练过程中的资源需求,刻画出使用不同类型的GPU时训练过程中计算量、中间结果通信数量、参数同步量等相应指标,并将其作为模型划分与任务放置的输入。然后根据模型刻画结果和GPU集群的环境,设计基于动态规划的划分算法,实现异构GPU和异构带宽感知的流水线混合并行模型划分与任务放置,目的是最小化划分之后各阶段任务执行时间的最大值,以确保负载均衡,实现深度神经网络的高效分布式训练。

Patent Agency Ranking