一种基于博弈优化的联合频谱感知与资源分配方法及装置

    公开(公告)号:CN108366428A

    公开(公告)日:2018-08-03

    申请号:CN201810227709.3

    申请日:2018-03-20

    Applicant: 东南大学

    Abstract: 本发明涉及OFDM认知无线网络技术领域,公开了一种基于博弈优化的联合频谱感知与资源分配方法及装置。该方法包括:从用户对主用户进行能量值检测,并产生对主用户状态的硬判决值;对于给定的分区组合,从用户计算自身的接入概率,同时数据融合中心计算该分区组合中所有从用户的接入效益并反馈给从用户,从用户依据接入概率和接入效益决定是否结束更新分区组合;依据分区组合各联盟中从用户对主用户状态的硬判决情况,选定一个联盟进行接入并最大化该联盟的接入效益。本发明充分考虑了用户的接入公平性以及用户的分区迭代意愿,能够充分利用信道时隙资源从而最大化实际的联盟接入效益,使网络中信道和功率资源得到有效利用。

    基于支持向量机和阈值筛选的恶意用户识别方法及装置

    公开(公告)号:CN108174379A

    公开(公告)日:2018-06-15

    申请号:CN201810131425.4

    申请日:2018-02-09

    Applicant: 东南大学

    CPC classification number: H04W12/00 H04L43/16 H04W16/14 H04W24/00

    Abstract: 本发明公开了一种基于支持向量机和阈值筛选的恶意用户识别方法及装置,用以解决二级用户中的恶意频谱感知问题。该方法通过提交二级用户对主用户的能量检测值,采用支持向量机方案对二级用户的能量检测值进行分析,并提取二级用户对主用户的状态分类正确率。其次,通过引入识别概率和误筛概率的概念,计算出二级用户的状态分类正确率阈值,并筛选出二级用户中的恶意用户。本发明能够在多种数据篡改攻击模式以及大规模恶意二级用户攻击中有效地识别恶意用户,从而保证正常用户的频谱资源分配。此外,本发明方法可以在某些固定的时间点执行并筛选恶意用户,能够满足各种计算复杂度的场合。

    一种基于博弈优化的联合频谱感知与资源分配方法及装置

    公开(公告)号:CN108366428B

    公开(公告)日:2021-12-07

    申请号:CN201810227709.3

    申请日:2018-03-20

    Applicant: 东南大学

    Abstract: 本发明涉及OFDM认知无线网络技术领域,公开了一种基于博弈优化的联合频谱感知与资源分配方法及装置。该方法包括:从用户对主用户进行能量值检测,并产生对主用户状态的硬判决值;对于给定的分区组合,从用户计算自身的接入概率,同时数据融合中心计算该分区组合中所有从用户的接入效益并反馈给从用户,从用户依据接入概率和接入效益决定是否结束更新分区组合;依据分区组合各联盟中从用户对主用户状态的硬判决情况,选定一个联盟进行接入并最大化该联盟的接入效益。本发明充分考虑了用户的接入公平性以及用户的分区迭代意愿,能够充分利用信道时隙资源从而最大化实际的联盟接入效益,使网络中信道和功率资源得到有效利用。

    基于支持向量机和阈值筛选的恶意用户识别方法及装置

    公开(公告)号:CN108174379B

    公开(公告)日:2020-09-11

    申请号:CN201810131425.4

    申请日:2018-02-09

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于支持向量机和阈值筛选的恶意用户识别方法及装置,用以解决二级用户中的恶意频谱感知问题。该方法通过提交二级用户对主用户的能量检测值,采用支持向量机方案对二级用户的能量检测值进行分析,并提取二级用户对主用户的状态分类正确率。其次,通过引入识别概率和误筛概率的概念,计算出二级用户的状态分类正确率阈值,并筛选出二级用户中的恶意用户。本发明能够在多种数据篡改攻击模式以及大规模恶意二级用户攻击中有效地识别恶意用户,从而保证正常用户的频谱资源分配。此外,本发明方法可以在某些固定的时间点执行并筛选恶意用户,能够满足各种计算复杂度的场合。

Patent Agency Ranking