-
公开(公告)号:CN108346789B
公开(公告)日:2020-07-31
申请号:CN201810110551.1
申请日:2018-02-05
Applicant: 东南大学
Abstract: 本发明公开一种多触点核壳空腔结构钠离子电池负极材料及其制备方法,该多触点核壳空腔结构钠离子电池负极材料为石墨烯/碳/二氧化锡核壳空腔结构纳米复合材料,其核层为二氧化锡多孔纳米球,外壳为石墨烯纳米片,核层与外壳之间通过碳纳米带多触点连接。其制备方法为:制备二氧化锡纳米球,在其表面依次包覆一层二氧化硅和一层聚多巴胺;所得产物与聚乙烯醇和氧化石墨烯水溶液共混,于50~70℃下连续搅拌8~12h后滴入模具中,冷冻成型后脱模、得到样品,将样品冻干、热处理;所得产物置于50~70℃的氢氧化钠水溶液中搅拌8~12h即得。该材料用作钠离子电池负极时,由于其优异的结构特性,显示出超高的比容量,卓越的倍率性能和循环稳定性。
-
公开(公告)号:CN108346789A
公开(公告)日:2018-07-31
申请号:CN201810110551.1
申请日:2018-02-05
Applicant: 东南大学
Abstract: 本发明公开一种多触点核壳空腔结构钠离子电池负极材料及其制备方法,该多触点核壳空腔结构钠离子电池负极材料为石墨烯/碳/二氧化锡核壳空腔结构纳米复合材料,其核层为二氧化锡多孔纳米球,外壳为石墨烯纳米片,核层与外壳之间通过碳纳米带多触点连接。其制备方法为:制备二氧化锡纳米球,在其表面依次包覆一层二氧化硅和一层聚多巴胺;所得产物与聚乙烯醇和氧化石墨烯水溶液共混,于50~70℃下连续搅拌8~12h后滴入模具中,冷冻成型后脱模、得到样品,将样品冻干、热处理;所得产物置于50~70℃的氢氧化钠水溶液中搅拌8~12h即得。该材料用作钠离子电池负极时,由于其优异的结构特性,显示出超高的比容量,卓越的倍率性能和循环稳定性。
-
公开(公告)号:CN109852802B
公开(公告)日:2020-12-11
申请号:CN201910023114.0
申请日:2019-01-10
Applicant: 东南大学
Abstract: 本发明公开了一种锂金属电池负极回收再利用的方法,包含步骤:1)对已循环后的废弃锂电池在真空或保护气氛下进行拆解,取出废弃锂金属;2)通过机械法剥离或清洗方式清除废弃锂金属表面的杂质,之后干燥;3)对干燥后的废弃锂金属进行压缩处理,之后将压缩后的废弃锂金属的清洗和干燥,得到回收的锂金属。该方法简单高效,不仅能够使已循环的锂金属再次利用,同时回收利用的锂金属仍然具有非常高的容量且循环稳定性得到极大的提升,有效抑制了锂枝晶的生长,与初始的锂金属相比具有更加优异的电化学性能。
-
公开(公告)号:CN107069004B
公开(公告)日:2019-10-11
申请号:CN201710230908.5
申请日:2017-04-11
Applicant: 东南大学
IPC: H01M4/36 , H01M4/48 , H01M4/62 , H01M10/0525 , B82Y30/00
Abstract: 本发明公开了一种三维多孔结构的锂离子电池负极材料的制备方法。首先,采用水热法制备二氧化锡/聚糖复合物团簇,然后将这些团簇溶于水和乙醇的混合溶液中,并向其中依次加入羧甲基纤维素钠和聚乙烯醇,混合均匀后再向其中加入低浓度的氧化石墨烯水溶液,并于50~70℃下连续搅拌12小时。最后,将搅拌均匀的溶液滴入硅胶模具中,用液氮自上而下将其冻住,将样品脱模后置于冷冻干燥箱中彻底冻干,所得产物在350~550℃下煅烧2~4小时。本发明的产物无定形碳/二氧化锡/石墨烯纳米复合材料表现为三维多孔结构,当用作锂离子电池负极材料时,由于其优异的结构特性,展现出超高的克容量,卓越的倍率性能和循环稳定性。
-
公开(公告)号:CN107069004A
公开(公告)日:2017-08-18
申请号:CN201710230908.5
申请日:2017-04-11
Applicant: 东南大学
IPC: H01M4/36 , H01M4/48 , H01M4/62 , H01M10/0525 , B82Y30/00
Abstract: 本发明公开了一种三维多孔结构的锂离子电池负极材料的制备方法。首先,采用水热法制备二氧化锡/聚糖复合物团簇,然后将这些团簇溶于水和乙醇的混合溶液中,并向其中依次加入羧甲基纤维素钠和聚乙烯醇,混合均匀后再向其中加入低浓度的氧化石墨烯水溶液,并于50~70℃下连续搅拌12小时。最后,将搅拌均匀的溶液滴入硅胶模具中,用液氮自上而下将其冻住,将样品脱模后置于冷冻干燥箱中彻底冻干,所得产物在350~550℃下煅烧2~4小时。本发明的产物无定形碳/二氧化锡/石墨烯纳米复合材料表现为三维多孔结构,当用作锂离子电池负极材料时,由于其优异的结构特性,展现出超高的克容量,卓越的倍率性能和循环稳定性。
-
公开(公告)号:CN106941164A
公开(公告)日:2017-07-11
申请号:CN201710232281.7
申请日:2017-04-11
Applicant: 东南大学
IPC: H01M4/36 , H01M4/38 , H01M4/583 , H01M10/0525
CPC classification number: H01M4/366 , H01M4/386 , H01M4/583 , H01M10/0525
Abstract: 本发明公开了一种锂离子电池负极核壳包覆结构材料的制备方法,该制备方法工艺简单,制备过程易控制。本发明先制备出氧化石墨烯材料,再将纳米硅制备成核壳结构的碳包覆硅材料,将氧化石墨烯与碳包覆硅粉按一定比例溶液共混,混合均匀后抽滤成二维薄膜,然后采用热还原,获得核壳结构硅@碳/石墨烯复合材料。采用本发明方法制备的电极材料在电流密度为200mA·g‑1时,首次充放电容量分别为835.8mAh·g‑1和1452.3mAh·g‑1,100次循环以后充放电容量为705.1mAh·g‑1和710.9mAh·g‑1,容量保持率达到84.4%,循环稳定性较好。
-
公开(公告)号:CN105938898A
公开(公告)日:2016-09-14
申请号:CN201610334993.5
申请日:2016-05-19
Applicant: 东南大学
IPC: H01M4/36 , H01M4/485 , H01M10/0525
CPC classification number: H01M4/364 , H01M4/485 , H01M10/0525
Abstract: 本发明公开了一种高性能的钛酸锂‑二氧化钛纳米复合材料锂离子电池负极材料的制备方法,该制备方法工艺简单,制备过程易控制,可进行大规模生产,且绿色环保。本发明产物为二维纳米片结构,当用作锂离子电池负极材料时,由于这种二维结构比表面积较大,有利于增大活性材料和电解液的接触面积,进而缩短了锂离子在电极中的传输路径。更重要的是,这种材料是一种三相共存复合材料,材料内部存在大量的晶界、相界,这有助于锂离子在纳米片的内部快速传导,提高材料的倍率性能,同时晶界区域亦可以储存一部分锂离子,因此可以获得更高的容量。
-
公开(公告)号:CN108695488A
公开(公告)日:2018-10-23
申请号:CN201810493098.7
申请日:2018-05-22
Applicant: 东南大学
IPC: H01M4/134 , H01M4/1395 , H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525
CPC classification number: H01M4/366 , H01M4/134 , H01M4/1395 , H01M4/382 , H01M4/628 , H01M10/0525
Abstract: 本发明公开了一种氧化锌‑金属锂复合负极及制备方法、金属锂二次电池,所述的氧化锌‑金属锂复合负极为三维结构,包括泡沫铜和复合在所述泡沫铜中的金属锂和氧化锌。本发明将泡沫铜和氧化锌及金属锂进行结合,以三维的泡沫铜为骨架,利用水热法在泡沫铜表面沉积一层氧化锌纳米层,然后利用所述的氧化锌纳米层的亲锂性,熔化固态金属锂后形成的液态锂能自发吸附于三维泡沫铜骨架中。所述的三维结构的金属锂负极相比于锂片负极,拥有很大的比表面积,能有效降低充放电过程中的电流密度。同时,内部多孔的结构能很好的将锂限制于内部空间中,减少充放电过程中锂负极的体积膨胀,有效抑制了枝晶的生长。
-
公开(公告)号:CN109852802A
公开(公告)日:2019-06-07
申请号:CN201910023114.0
申请日:2019-01-10
Applicant: 东南大学
Abstract: 本发明公开了一种锂金属电池负极回收再利用的方法,包含步骤:1)对已循环后的废弃锂电池在真空或保护气氛下进行拆解,取出废弃锂金属;2)通过机械法剥离或清洗方式清除废弃锂金属表面的杂质,之后干燥;3)对干燥后的废弃锂金属进行压缩处理,之后将压缩后的废弃锂金属的清洗和干燥,得到回收的锂金属。该方法简单高效,不仅能够使已循环的锂金属再次利用,同时回收利用的锂金属仍然具有非常高的容量且循环稳定性得到极大的提升,有效抑制了锂枝晶的生长,与初始的锂金属相比具有更加优异的电化学性能。
-
公开(公告)号:CN107128977A
公开(公告)日:2017-09-05
申请号:CN201710285880.5
申请日:2017-04-27
Applicant: 东南大学
CPC classification number: Y02E60/13 , C01G45/12 , B82Y30/00 , C01P2004/04 , C01P2004/64 , H01G11/46
Abstract: 本发明公开了一种高性能电容器电极材料非化学计量锰酸镧(LaMnx±1O3)的制备方法。首先将锰和镧的硝酸盐按一定比例混合,搅拌得到溶胶,再干燥得到干凝胶,最后进行煅烧处理得到非化学计量的LaMnx±1O3。本发明产物为多孔结构,具有大的比表面积,提高了能量密度;LaMnx±1O3具有较高氧空位浓度,提高了离子和电子的传输速度从而增强了功率密度。与化学计量的锰酸镧(LaMnO3)相比,LaMnx±1O3作为超级电容器电极材料时,具有更高的容量和循环稳定性。在扫描速率为0.5A/g时,LaMn1.1O3的比电容为508F/g。当电流密度为3A/g时,经过1000次循环,容量保持在75%,最终稳定在250F/g左右。
-
-
-
-
-
-
-
-
-