一种语音情感维度区域的自动识别方法

    公开(公告)号:CN105609116B

    公开(公告)日:2019-03-05

    申请号:CN201510976875.X

    申请日:2015-12-23

    Applicant: 东南大学

    Abstract: 本发明公开了一种语音情感维度区域的自动识别方法,属于语音识别技术领域。我们采用了一种特征空间重构的方法进行分类器的优化。第一,我们提取和优化基本声学特征作为区分情感区域的基准;第二,我们采用特征空间重构的方法将多个情感特征空间分解和配对,分别采用LDA和PCA模块级联的方法,提高目标类之间的离散程度;第三,我们提出两种情感区域的分割方法,即四个区域和十六个区域的分割方法,进行复合情感的分解,取代传统的基本情感类型,通过相关计算来融合分类器输出,进行情感区域的识别,获得了更高的识别效果。

    一种基于深度递归型条件受限玻尔兹曼机的测谎方法

    公开(公告)号:CN108175426A

    公开(公告)日:2018-06-19

    申请号:CN201711315604.5

    申请日:2017-12-11

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于深度递归型条件受限玻尔兹曼机的测谎方法,首先在连续语音段落中,利用条件受限玻尔兹曼机对时间序列具有良好的建模特性和简易的推理过程,对训练样本进行建模,得到说话人是否说谎的高阶统计信息;接着用该高阶统计信息和训练样本的标签对递归神经网络进行有监督的参数训练。在获得条件受限玻尔兹曼机和递归神经网络的初始化参数后,将这两个基本网络单元由下至上搭建而成;并在验证数据集上,基于最小二乘回归微调递归神经网络的参数;利用建立的网络,对说话人的语音信号特征进行测试。本发明能够自动得到测谎的结果,且具有相对较高的识别率,该方法对评测者的专业知识和技能要求不高,有较高的测试效率。

    一种语音情感维度区域的自动识别方法

    公开(公告)号:CN105609116A

    公开(公告)日:2016-05-25

    申请号:CN201510976875.X

    申请日:2015-12-23

    Applicant: 东南大学

    CPC classification number: G10L25/63 G10L15/08 G10L25/15 G10L25/24

    Abstract: 本发明公开了一种语音情感维度区域的自动识别方法,属于语音识别技术领域。我们采用了一种特征空间重构的方法进行分类器的优化。第一,我们提取和优化基本声学特征作为区分情感区域的基准;第二,我们采用特征空间重构的方法将多个情感特征空间分解和配对,分别采用LDA和PCA模块级联的方法,提高目标类之间的离散程度;第三,我们提出两种情感区域的分割方法,即四个区域和十六个区域的分割方法,进行复合情感的分解,取代传统的基本情感类型,通过相关计算来融合分类器输出,进行情感区域的识别,获得了更高的识别效果。

    一种基于多核学习判别分析的舰船辐射信号识别方法

    公开(公告)号:CN104156628B

    公开(公告)日:2017-05-31

    申请号:CN201410437529.X

    申请日:2014-08-29

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于多核学习判别分析的舰船辐射信号识别方法,对舰船辐射信号样本依次进行预处理、听觉模型特征提取、维数约简、分类器分类判决。其中在维数约简阶段,使用了基于多核学习判别分析的方法,利用交替优化,分别对核映射系数和线性多核组合系数,在用图嵌入形式表示的核判别分析优化目标下,进行优化运算。与现有方法相比,本发明的方法在舰船辐射信号的识别方面,能够有效地提升系统的识别性能。

    一种基于说话人惩罚的独立于说话人语音情感识别方法

    公开(公告)号:CN103854645B

    公开(公告)日:2016-08-24

    申请号:CN201410078383.4

    申请日:2014-03-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于说话人惩罚的独立于说话人语音情感识别方法,对语音信号样本依次进行预处理、语音情感原始特征提取、维数约简、分类器分类判决。其中在维数约简阶段,使用了基于说话人惩罚的图嵌入学习方法,利用说话人标签信息,分别针对属于同一类情感类别但说话人不同,以及属于同一说话人但分属于不同情感类别的语音信号样本对,在图嵌入理论的基础上利用已有理论,进行组合优化运算。与现有方法相比,本发明的方法在独立于说话人的语音情感识别中,能够有效地提升系统的识别性能。

    具有多重注意机制的卷积循环神经网络的语音情感识别方法

    公开(公告)号:CN113450830A

    公开(公告)日:2021-09-28

    申请号:CN202110695847.6

    申请日:2021-06-23

    Applicant: 东南大学

    Abstract: 本发明公布了一种具有多重注意机制的卷积循环神经网络的语音情感识别方法,包括:步骤1,提取谱图特征和帧级特征。步骤2,谱图特征输送进CNN模块来学习特征中的时频相关信息。步骤3,多头自注意力层作用于CNN模块来计算不同规模的全局特征下不同帧的权重,并融合CNN中不同深度的特征。步骤4,一个多维注意层作用于LSTM输入的帧级特征来综合考虑局部特征与全局特征的关系。步骤5,处理过的帧级特征输送进LSTM模型中来获取特征中的时间信息。步骤6,一个融合层来总结不同模块的输出来增强模型性能。步骤7,利用Softmax分类器对不同情感进行分类。本发明结合深度学习网络,模块内部采用并行的连接结构来同时处理特征,能够有效的提升语音情感识别的性能。

    一种基于级联混合高斯形状模型的多姿态图像特征点配准方法

    公开(公告)号:CN104537386A

    公开(公告)日:2015-04-22

    申请号:CN201410677256.6

    申请日:2014-11-21

    Applicant: 东南大学

    CPC classification number: G06T2207/20036

    Abstract: 本发明公开了一种基于级联混合高斯形状模型的多姿态图像特征点配准方法。该方法针对任意一种图像特征点定位器的定位结果,本发明中的配准方法能够显著提高其定位精度。本发明中所述的配准方法主要包括以下步骤:一、在多姿态的图像数据库上进行混合高斯形状模型的建模;二、采用一种级联的混合高斯形状模型对特征点进行校准,在每一级中,遍历特征点可能组成的形状,通过计算该形状对应的似然概率的阈值来判断出错误定位的特征点;三、采用正确特征点的高斯分布条件概率进行错误特征点的纠错。

Patent Agency Ranking