大规模无人机集群系统在线任务调配优化方法

    公开(公告)号:CN118966649A

    公开(公告)日:2024-11-15

    申请号:CN202411005438.9

    申请日:2024-07-25

    Applicant: 东南大学

    Abstract: 本发明提出了一种大规模无人机集群在线任务调配优化方法,包括一个在线调配框架和三种针对低优先级任务、高优先级任务、混合优先级任务的调配策略。首先,无人机被建模为智能体,大规模集群中的无人机按层次建模为网络层,并对智能体上的任务和新到来的在线任务进行建模。其次,为处理实时任务并降低开销,设计了包含任务输入预处理、计算调度、处理反馈三个阶段的在线调配框架。最后,基于框架,分别设计了被动调配策略应对低优先级任务,主动调配策略应对高优先级任务,以及主被动结合策略应对混合任务集,旨在减少调配对系统影响,提升任务成功率和完成率。

    无人机集群通信与决策针对链路动态性的智能目标任务分配方法

    公开(公告)号:CN118938999A

    公开(公告)日:2024-11-12

    申请号:CN202411005423.2

    申请日:2024-07-25

    Abstract: 本发明提出了一种无人机集群通信与决策针对链路动态性的智能目标任务分配方法,以应对链路动态性带来的挑战。随着无人机网络结构日趋复杂,链路的不稳定性对智能体间的交互稳定性造成影响。本方法通过分组、分层策略,将受动态性因素影响的任务迁移给其他智能体,减少任务接收次数,降低动态性因素传播风险,更好更智能地完成目标任务分配工作。具体操作包括将无人机建模为智能体,将不同层次的无人机群建模为网络层,对智能体任务进行三类分组,并根据智能体接受和任务完成的风险与成本,选择迁移智能体。与传统集中式任务迁移方法相比,本发明有效减轻了动态性因素影响,提高了任务完成率。

Patent Agency Ranking