基于孪生网络和动作选择机制的目标跟踪方法及系统

    公开(公告)号:CN109543559B

    公开(公告)日:2021-12-28

    申请号:CN201811286172.4

    申请日:2018-10-31

    Applicant: 东南大学

    Inventor: 张毅锋 张卓翼

    Abstract: 本发明公开了一种基于孪生网络和动作选择机制的目标跟踪方法。该方法以孪生网络为框架,首先利用大量外部视频数据训练网络权重;训练完成后,在任意一段视频中,指定任一跟踪目标的情况下采集候选区域,输入到该孪生网络,将得到的候选区域的特征中根据动作选择机制选择与跟踪目标最相似的特征后,以矩形框的方式将其映射回原图的位置,作为当前帧的跟踪结果,最终得到的矩形框可以是任意长宽比和尺寸。本发明还提出了基于孪生网络和动作选择机制的目标跟踪系统,与传统的方法相比,本发明利用训练好的孪生网络,结合不同层的输出,能够通过匹配目标不同层次的特征,使得对目标的外观变化有更强的鲁棒性,同时本发明具有实时性、精度高等优点。

    基于孪生网络和动作选择机制的目标跟踪方法及系统

    公开(公告)号:CN109543559A

    公开(公告)日:2019-03-29

    申请号:CN201811286172.4

    申请日:2018-10-31

    Applicant: 东南大学

    Inventor: 张毅锋 张卓翼

    Abstract: 本发明公开了一种基于孪生网络和动作选择机制的目标跟踪方法。该方法以孪生网络为框架,首先利用大量外部视频数据训练网络权重;训练完成后,在任意一段视频中,指定任一跟踪目标的情况下采集候选区域,输入到该孪生网络,将得到的候选区域的特征中根据动作选择机制选择与跟踪目标最相似的特征后,以矩形框的方式将其映射回原图的位置,作为当前帧的跟踪结果,最终得到的矩形框可以是任意长宽比和尺寸。本发明还提出了基于孪生网络和动作选择机制的目标跟踪系统,与传统的方法相比,本发明利用训练好的孪生网络,结合不同层的输出,能够通过匹配目标不同层次的特征,使得对目标的外观变化有更强的鲁棒性,同时本发明具有实时性、精度高等优点。

Patent Agency Ranking