一种采用多源同构数据的行程时间动态融合预测方法

    公开(公告)号:CN103903430A

    公开(公告)日:2014-07-02

    申请号:CN201410149283.6

    申请日:2014-04-14

    Applicant: 东南大学

    Abstract: 本发明公开了一种采用多源同构数据的行程时间实时融合预测方法,包括在获得多源同构等时间间隔的连续行程时间数据序列的基础上,构建多源行程时间D-S证据推理模型识别框架;利用能够获得预测均值和动态方差的时间序列模型分别计算各类单一行程时间数据源的实时预测均值和动态方差;以动态方差预测结果作为输入数据,通过计算获得D-S证据推理模型的基本概率分配函数和基本信任分配函数,通过证据合成规则计算多源行程时间数据的动态融合权重;由单一数据源的预测均值与动态融合权重的加权和计算得到行程时间的融合结果。本发明降低了由单一数据源描述或预测道路行程时间的不确定性,进一步提高行程时间预测的准确性和可靠性,可操作性强。

    一种采用多源同构数据的行程时间动态融合预测方法

    公开(公告)号:CN103903430B

    公开(公告)日:2015-01-28

    申请号:CN201410149283.6

    申请日:2014-04-14

    Applicant: 东南大学

    Abstract: 本发明公开了一种采用多源同构数据的行程时间实时融合预测方法,包括在获得多源同构等时间间隔的连续行程时间数据序列的基础上,构建多源行程时间D-S证据推理模型识别框架;利用能够获得预测均值和动态方差的时间序列模型分别计算各类单一行程时间数据源的实时预测均值和动态方差;以动态方差预测结果作为输入数据,通过计算获得D-S证据推理模型的基本概率分配函数和基本信任分配函数,通过证据合成规则计算多源行程时间数据的动态融合权重;由单一数据源的预测均值与动态融合权重的加权和计算得到行程时间的融合结果。本发明降低了由单一数据源描述或预测道路行程时间的不确定性,进一步提高行程时间预测的准确性和可靠性,可操作性强。

Patent Agency Ranking