-
公开(公告)号:CN109886406A
公开(公告)日:2019-06-14
申请号:CN201910136000.7
申请日:2019-02-25
Applicant: 东南大学
Abstract: 本发明公开了一种基于深度压缩算法的复数卷积神经网络压缩的方法,首先通过正常的网络训练学习网络的连通性;然后,对训练过的网络参数进行修剪,将复数参数的模低于一个阈值的连接修剪掉;接着,将修剪过后的稀疏网络进行量化,进一步压缩网络;最后,利用哈夫曼编码对复数参数的实部和虚部进行编码,得到最终的压缩网络。本发明方法利用卷积神经网络中过多的冗余参数,删减掉不重要的连接,并进一步通过量化和哈夫曼编码压缩网络,在很大程度上减少了网络的参数,并且只有很小的精度损失,达到了压缩复数卷积神经网络的目的,解决了复数卷积神经网络由于巨大的参数量无法部署在嵌入式设备上的问题。