一种基于灯条匹配的装甲板识别算法

    公开(公告)号:CN111985481B

    公开(公告)日:2024-08-09

    申请号:CN202010721041.5

    申请日:2020-07-24

    Applicant: 东南大学

    Abstract: 本发明涉及一种基于灯条匹配的装甲板识别算法,首先对图像预处理,基于灯条几何特征约束遍历轮廓提取灯条并对灯条进行匹配,通过提取装甲板数字图案,采用模板匹配提高装甲板的识别率;接着利用图像像素坐标系和真实世界坐标转换,获得控制转角进行云台控制,解决了云台控制滞后于物体运动的情况;最后建立目标选择机制模型及目标跟踪机制模型,确定跟踪视野外的潜在威胁目标;本发明解决了背景技术中提出的无法确定装甲最优击打目标、装甲误识别率高、鲁棒性差等问题,为装甲识别提供了一种可靠的识别方法,具有良好的市场前景。

    一种适用于无人方程式赛车的直线加速车道标志线检测方法

    公开(公告)号:CN111931560A

    公开(公告)日:2020-11-13

    申请号:CN202010579870.4

    申请日:2020-06-23

    Applicant: 东南大学

    Abstract: 本发明涉及一种适用于无人方程式赛车的直线加速车道标志线检测方法,主要适用于赛道的起始线和终止线检测以及直线加速赛道的车道标志线检测,将图像进行灰度化处理,采用高斯滤波器去除噪声,基于Sobel算子进行道路边缘增强,通过将图像进行二值化处理得到道路预处理图像;采用Canny边缘检测算子进行车道线边缘的提取,接着结合车道线特征建立自适应三角形感兴趣区域,将图像分为左右两部分,采用Hough变换分别拟合识别车道标志线检测出道路边界,最后输出两条车道线并叠加到原始图像中;本发明可应用于无人驾驶领域的驾驶辅助系统,减少由于驾驶员分心而造成的伤亡事故。

    一种四轮驱动电动汽车的转矩优化分配控制方法

    公开(公告)号:CN111634195A

    公开(公告)日:2020-09-08

    申请号:CN202010396171.6

    申请日:2020-05-12

    Applicant: 东南大学

    Abstract: 本发明涉及一种四轮驱动电动汽车的转矩优化分配控制方法,制订了电机在行车工况、滑行工况和起步工况下的电机效率计算模型,将汽车行驶模式分为双轴行车模式、单轴行车模式、双轴起步模式和单轴起步模式,分别确定了不同模式下的消耗功率计算方法,通过离线的全局优化算法获取以能量最优为目标的转矩分配系数。为了避免控制过程中转矩变化过大,建立面向转矩变化率的转矩优化分配模型,采用模糊控制规则确定动态权重因子,进而最终确定四轮转矩分配结果;该方法以降低能量消耗和电机内电流波动为目标,计算出面向节能和转矩变化率的转矩分配系数及其对应的全局最优效率,极大地提升电动汽车的续航里程,保证轮毂电机使用的安全性和长效性。

    一种四轮驱动电动汽车的转矩优化分配控制方法

    公开(公告)号:CN111634195B

    公开(公告)日:2022-03-08

    申请号:CN202010396171.6

    申请日:2020-05-12

    Applicant: 东南大学

    Abstract: 本发明涉及一种四轮驱动电动汽车的转矩优化分配控制方法,制订了电机在行车工况、滑行工况和起步工况下的电机效率计算模型,将汽车行驶模式分为双轴行车模式、单轴行车模式、双轴起步模式和单轴起步模式,分别确定了不同模式下的消耗功率计算方法,通过离线的全局优化算法获取以能量最优为目标的转矩分配系数。为了避免控制过程中转矩变化过大,建立面向转矩变化率的转矩优化分配模型,采用模糊控制规则确定动态权重因子,进而最终确定四轮转矩分配结果;该方法以降低能量消耗和电机内电流波动为目标,计算出面向节能和转矩变化率的转矩分配系数及其对应的全局最优效率,极大地提升电动汽车的续航里程,保证轮毂电机使用的安全性和长效性。

    一种基于彩色相机与红外热成像仪特征融合的目标检测方法

    公开(公告)号:CN111382683A

    公开(公告)日:2020-07-07

    申请号:CN202010135485.0

    申请日:2020-03-02

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于彩色相机与红外热成像仪特征融合的目标检测方法,包括以下步骤:a、通过彩色相机获得彩色数据集,通过红外热成像仪获得热红外数据集;b、将双模态数据集同时输入到双模态的YOLOv3神经网络算法中,提取目标的颜色特征与温度特征;在主干网络的某一层通过融合函数与1×1卷积块将两个模态的特征融合,然后选取融合后的特征图继续进行主干网络的特征提取,得到融合后的提取特征图;c、融合后的提取特征图输入到后续的卷积层中进行目标的分类,输出训练完成的双模态神经网络的算法模型。本发明融合温度与颜色信息,在双模态神经主干网络算法进行融合,输入分类层中进行目标的预测,增加目标的多种特征信息,提高目标识别准确性。

    一种基于彩色相机与红外热成像仪特征融合的目标检测方法

    公开(公告)号:CN111382683B

    公开(公告)日:2023-05-23

    申请号:CN202010135485.0

    申请日:2020-03-02

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于彩色相机与红外热成像仪特征融合的目标检测方法,包括以下步骤:a、通过彩色相机获得彩色数据集,通过红外热成像仪获得热红外数据集;b、将双模态数据集同时输入到双模态的YOLOv3神经网络算法中,提取目标的颜色特征与温度特征;在主干网络的某一层通过融合函数与1×1卷积块将两个模态的特征融合,然后选取融合后的特征图继续进行主干网络的特征提取,得到融合后的提取特征图;c、融合后的提取特征图输入到后续的卷积层中进行目标的分类,输出训练完成的双模态神经网络的算法模型。本发明融合温度与颜色信息,在双模态神经主干网络算法进行融合,输入分类层中进行目标的预测,增加目标的多种特征信息,提高目标识别准确性。

    一种适用于无人方程式赛车的直线加速车道标志线检测方法

    公开(公告)号:CN111931560B

    公开(公告)日:2022-11-01

    申请号:CN202010579870.4

    申请日:2020-06-23

    Applicant: 东南大学

    Abstract: 本发明涉及一种适用于无人方程式赛车的直线加速车道标志线检测方法,主要适用于赛道的起始线和终止线检测以及直线加速赛道的车道标志线检测,将图像进行灰度化处理,采用高斯滤波器去除噪声,基于Sobel算子进行道路边缘增强,通过将图像进行二值化处理得到道路预处理图像;采用Canny边缘检测算子进行车道线边缘的提取,接着结合车道线特征建立自适应三角形感兴趣区域,将图像分为左右两部分,采用Hough变换分别拟合识别车道标志线检测出道路边界,最后输出两条车道线并叠加到原始图像中;本发明可应用于无人驾驶领域的驾驶辅助系统,减少由于驾驶员分心而造成的伤亡事故。

    一种基于灯条匹配的装甲板识别算法

    公开(公告)号:CN111985481A

    公开(公告)日:2020-11-24

    申请号:CN202010721041.5

    申请日:2020-07-24

    Applicant: 东南大学

    Abstract: 本发明涉及一种基于灯条匹配的装甲板识别算法,首先对图像预处理,基于灯条几何特征约束遍历轮廓提取灯条并对灯条进行匹配,通过提取装甲板数字图案,采用模板匹配提高装甲板的识别率;接着利用图像像素坐标系和真实世界坐标转换,获得控制转角进行云台控制,解决了云台控制滞后于物体运动的情况;最后建立目标选择机制模型及目标跟踪机制模型,确定跟踪视野外的潜在威胁目标;本发明解决了背景技术中提出的无法确定装甲最优击打目标、装甲误识别率高、鲁棒性差等问题,为装甲识别提供了一种可靠的识别方法,具有良好的市场前景。

Patent Agency Ranking