-
公开(公告)号:CN117155494A
公开(公告)日:2023-12-01
申请号:CN202311097011.1
申请日:2023-08-29
Applicant: 东南大学 , 网络通信与安全紫金山实验室
IPC: H04B17/391 , G06F18/213 , G06N3/0464 , G06N3/08 , G06F30/20 , G06N3/044 , H04B17/309 , H04B17/373 , H04B7/22
Abstract: 本发明公开了一种基于散射体密度的场景预测信道建模方法,包括:通过信道测量或仿真获取具有不同场景散射体密度的信道数据;基于信道数据进行数据预处理得到相应的信道统计特性;以不同场景的散射密度为主要特征,构建图数据集来增强数据的空时相关性;按照一定比例将图数据集进行划分,然后利用图注意力网络和门控循环单元网络捕获信道的空时相关特征,实现跨场景信道预测。本发明提出的场景预测信道建模方法,能够捕获不同场景下的信道变化,通过信道空时高相关性数据特征来获取不同散射体密度下信道的特性,在基于场景的信道预测方面具有较好的性能,可用于6G多场景系统设计、网络优化与网络规划、资源分配等关键技术。
-
公开(公告)号:CN115694697B
公开(公告)日:2024-11-29
申请号:CN202211189126.9
申请日:2022-09-28
Applicant: 东南大学
IPC: H04B17/391 , H04B17/373 , G06N3/0442 , G06N3/048 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种基于机器学习的空时域预测信道建模方法,包括:通过信道测量或仿真获取信道数据,并设置信道数据的邻节点数和时刻序列长度,构造空时图数据集;建立图注意力网络和门控循环单元模型,依次提取信道空间和时间特征;利用模型所提取信道空时域融合特征,预测当前通信场景下未来时刻各位置的信道统计特性。本发明提出的利用信道空时域高相关性数据特征的信道预测方法,能够实现对未知地点和未知时刻进行高精度信道统计特性预测,对多维度的预测信道建模研究具有指导意义。
-
公开(公告)号:CN115694697A
公开(公告)日:2023-02-03
申请号:CN202211189126.9
申请日:2022-09-28
Applicant: 东南大学
IPC: H04B17/391 , H04B17/373 , G06N3/0442 , G06N3/048 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种基于机器学习的空时域预测信道建模方法,包括:通过信道测量或仿真获取信道数据,并设置信道数据的邻节点数和时刻序列长度,构造空时图数据集;建立图注意力网络和门控循环单元模型,依次提取信道空间和时间特征;利用模型所提取信道空时域融合特征,预测当前通信场景下未来时刻各位置的信道统计特性。本发明提出的利用信道空时域高相关性数据特征的信道预测方法,能够实现对未知地点和未知时刻进行高精度信道统计特性预测,对多维度的预测信道建模研究具有指导意义。
-
-