一种基于异质关系网络注意力机制的交易欺诈检测方法

    公开(公告)号:CN111260462B

    公开(公告)日:2022-05-27

    申请号:CN202010045141.0

    申请日:2020-01-16

    Applicant: 东华大学

    Abstract: 本发明涉及一种基于异质关系网络注意力机制的交易欺诈检测方法,其关键在于,根据交易数据抽取实体关系,构建关系网络二部图,提出了基于节点收缩的异质网络同质化方法和基于Attention机制的邻域信息聚合算法。将信贷交易从关系网络的角度出发,进行建模分析,同时结合实际情况,充分考虑交易之间差异化的潜在关系,设计Attention机制进行节点间关系的差异化生成,提升了欺诈检测的效果。本发明提供的方法从实用性角度出发,通过将注意力从交易节点本身转化到关系网络中交易的若干阶邻域信息,充分考虑交易节点间潜在的差异性的关联关系,进行欺诈检测。

    一种基于异质关系网络注意力机制的交易欺诈检测方法

    公开(公告)号:CN111260462A

    公开(公告)日:2020-06-09

    申请号:CN202010045141.0

    申请日:2020-01-16

    Applicant: 东华大学

    Abstract: 本发明涉及一种基于异质关系网络注意力机制的交易欺诈检测方法,其关键在于,根据交易数据抽取实体关系,构建关系网络二部图,提出了基于节点收缩的异质网络同质化方法和基于Attention机制的邻域信息聚合算法。将信贷交易从关系网络的角度出发,进行建模分析,同时结合实际情况,充分考虑交易之间差异化的潜在关系,设计Attention机制进行节点间关系的差异化生成,提升了欺诈检测的效果。本发明提供的方法从实用性角度出发,通过将注意力从交易节点本身转化到关系网络中交易的若干阶邻域信息,充分考虑交易节点间潜在的差异性的关联关系,进行欺诈检测。

    一种基于实体关系的在线交易欺诈检测方法

    公开(公告)号:CN110555455A

    公开(公告)日:2019-12-10

    申请号:CN201910525215.8

    申请日:2019-06-18

    Applicant: 东华大学

    Abstract: 本发明涉及一种基于实体关系的在线交易欺诈检测方法,其关键在于,根据交易数据抽取实体关系,构建关系网络二部图,提出了基于节点收缩的异质网络同质化方法和基于集成学习、图表征学习的邻域信息聚合提升树分类模型机制。本发明提供的方法从实用性角度出发,通过将注意力从交易节点本身转化到关系网络中交易的若干阶邻域信息,充分考虑交易之间潜在的关联关系,为挖掘团伙欺诈提供了可能性。梯度提升模型通过不断拟合模型的残差,提高欺诈识别的效果,有很好的表现效果。同时,该方法将集成学习从网格型数据的应用扩展至图数据的应用领域。基于以上方面,建立了借贷交易欺诈检测方法的框架,为解决欺诈交易检测提供了技术支持。

Patent Agency Ranking