-
公开(公告)号:CN111368710B
公开(公告)日:2022-03-04
申请号:CN202010134754.1
申请日:2020-02-27
Applicant: 东北石油大学
Abstract: 本发明属于地球科学技术领域,具体涉及一种联合深度学习的地震数据随机噪声压制方法,该方法的步骤为1、训练数据集预处理;2、样本标签准备;3、设计联合学习模型G的网络结构;4、设计损失函数;5、训练并保存网络模型;6、测试网络模型性能。通过波原子变换对地震数据波前纹理特征进行有效地稀疏表示,获取波原子域地震数据的纹理特征;将含噪声地震数据作为输入,波原子域数据和实际不含噪声数据的特征作为标签,构建空间域与波原子域联合深度学习网络结构。通过联合学习的方案解决地震数据特征提取不充分的问题,提高噪声压制效果。将空间域和波原子域的特征相结合,利用空间域与波原子域联合深度学习技术去除地震数据随机噪声。
-
公开(公告)号:CN111368710A
公开(公告)日:2020-07-03
申请号:CN202010134754.1
申请日:2020-02-27
Applicant: 东北石油大学
Abstract: 本发明属于地球科学技术领域,具体涉及一种联合深度学习的地震数据随机噪声压制方法,该方法的步骤为1、训练数据集预处理;2、样本标签准备;3、设计联合学习模型G的网络结构;4、设计损失函数;5、训练并保存网络模型;6、测试网络模型性能。通过波原子变换对地震数据波前纹理特征进行有效地稀疏表示,获取波原子域地震数据的纹理特征;将含噪声地震数据作为输入,波原子域数据和实际不含噪声数据的特征作为标签,构建空间域与波原子域联合深度学习网络结构。通过联合学习的方案解决地震数据特征提取不充分的问题,提高噪声压制效果。将空间域和波原子域的特征相结合,利用空间域与波原子域联合深度学习技术去除地震数据随机噪声。
-