一种不良数据辨识方法
    1.
    发明公开

    公开(公告)号:CN110544047A

    公开(公告)日:2019-12-06

    申请号:CN201910854363.4

    申请日:2019-09-10

    Abstract: 本发明公开了一种不良数据辨识方法,包括以下步骤:S1,使用凝聚层次聚类算法和真实Index的模型评估指标,确定PAM算法的初始聚类个数;S2,使用PAM算法对正常数据进行聚类,并计算每类的均方差,得出正常数据的类均方差范围;S3,运用间隙统计算法对待测数据进行聚类并得出结果;S4,比较待测数据所得聚类个数与正常数据通过HC-Center聚类算法所得聚类个数是否一致,若一致即不存在不良数据,否则需计算每个类的均方差,判断其是否在正常数据的类均方差范围之内,若不在,则类中数据视为不良数据。本发明解决了PAM算法需要人为设定初始聚类个数的缺陷,提高了聚类的准确度;能够高效、准确地对数据进行聚类运算。

Patent Agency Ranking