一种基于GCN和GRU增强U-Net特征的高光谱分类方法及系统

    公开(公告)号:CN112926452B

    公开(公告)日:2022-06-14

    申请号:CN202110212923.3

    申请日:2021-02-25

    Abstract: 本发明提出一种基于GCN和GRU增强U‑Net特征的高光谱分类方法,所述方法为解决高光谱波段数据之间的类内高变异性和类间的相似性提供了新的解决方案。针对传统模型忽略特征之间所存在的潜在关系,提出使用图神经网络(GCN)和门控循环单元(GRU)获取U‑Net下采样特征之间的潜在关系,同时注意力机制用于根据上下文特征的重要程度学习得到新的特征。该方法将下采样得到的较混乱的特征转化为高内聚低耦合的特征,为下游的任务提供干净可靠的数据。同时该方法在小样本高光谱上只需要迭代很少次就能取得十分优异的结果。

    一种基于GCN和GRU增强U-Net特征的高光谱分类方法及系统

    公开(公告)号:CN112926452A

    公开(公告)日:2021-06-08

    申请号:CN202110212923.3

    申请日:2021-02-25

    Abstract: 本发明提出一种基于GCN和GRU增强U‑Net特征的高光谱分类方法,所述方法为解决高光谱波段数据之间的类内高变异性和类间的相似性提供了新的解决方案。针对传统模型忽略特征之间所存在的潜在关系,提出使用图神经网络(GCN)和门控循环单元(GRU)获取U‑Net下采样特征之间的潜在关系,同时注意力机制用于根据上下文特征的重要程度学习得到新的特征。该方法将下采样得到的较混乱的特征转化为高内聚低耦合的特征,为下游的任务提供干净可靠的数据。同时该方法在小样本高光谱上只需要迭代很少次就能取得十分优异的结果。

Patent Agency Ranking