-
公开(公告)号:CN110458239A
公开(公告)日:2019-11-15
申请号:CN201910751343.4
申请日:2019-08-15
Applicant: 东北大学秦皇岛分校
Abstract: 本发明公开了一种基于双通道卷积神经网络的恶意软件分类方法及系统,系统包括:训练样本处理模块和操作码提取模块,用于对训练样本进行反编译,得到应用程序的操作码序列;API特征提取模块,用于获得训练样本的敏感API特征;双通道卷积神经网络训练模块,使用操作码序列和敏感API特征序列训练并得到输出为准确度的双通道卷积神经网络;准确度判断模块和检测模块,用于判断双通道卷积神经网络输出的准确度是否达到设定值,并在达到设定值时对待识别软件进行检测;概率输出模块,输出待识别软件为恶意软件的概率值。本发明结合了应用程序的操作码序列和敏感API特征检测的优势,在准确度以及数据处理方面都有很大的提升。