一种声发射与数值计算相结合的岩石破裂过程分析方法

    公开(公告)号:CN107101887B

    公开(公告)日:2019-06-07

    申请号:CN201710319573.4

    申请日:2017-05-09

    Applicant: 东北大学

    Abstract: 本发明专利提出了一种声发射与数值计算相结合的岩石破裂过程分析方法,将声发射\微震监测与数值计算结合起来对岩石损伤与破裂过程进行分析。首先,利用声发射\微震信息反演破裂源损伤尺寸和程度,对岩石的弹性模量和强度进行相应地弱化;然后将这些参数输入数值模型之中,再进行数值计算分析。利用该方法,可以获取真实应力场并有效预测岩石破裂模式。本发明为研究岩石损伤与破裂提供了一种精确可靠的新方法。

    一种恒定功率加载的岩石力学实验方法

    公开(公告)号:CN106769393B

    公开(公告)日:2019-06-25

    申请号:CN201611129414.X

    申请日:2016-12-09

    Applicant: 东北大学

    Abstract: 本发明提供一种恒定功率加载的岩石力学实验方法,包括:在试验机上增加恒定功率加载控制模块;将岩石试样安放于试验机上,并将声发射监测探头安装在岩石试样表面;在恒定速率加载控制模式下对所述岩石试样施加压力,加载速率保持为V;待岩石试样受力达到设定值F,即岩石试样的受载功率达到P,P=F×V,此时切换为恒定功率加载控制模式,在试验机对岩石试样施加的压力不断增大的同时降低加载速率,但始终保持加载速率与压力的乘积为定值P,直至岩石试样完全破坏,在此过程中监测并记录试验机的压力和压头位移、岩石试样的声发射信号;根据试验机的压力、位移实验结果以及岩石试样的声发射信号数据,分析岩石试样的破坏规律。

    一种锚杆拉拔及应力波检测试验装置及方法

    公开(公告)号:CN106092749A

    公开(公告)日:2016-11-09

    申请号:CN201610390858.2

    申请日:2016-06-03

    Applicant: 东北大学

    Abstract: 一种锚杆拉拔及应力波检测试验装置及方法,装置包括承压筒、水压泵、空心千斤顶、激振器、应力波传感器、应变片、压力传感器及位移传感器,试样由锚杆和类围岩体组成,类围岩体两端的锚杆上套装有密封挡块,类围岩体及密封挡块外部包覆有热缩管;试验方法为:在承压筒内装配固定试样,依次安装空心千斤顶、压力传感器、锚具、激振器、应力波传感器及位移传感器,导通水压泵出水口与承压筒筒壁注水口,并对试样施加围压,通过空心千斤顶对锚杆施加拉拔力,通过位移传感器测量锚杆位移量,通过应变片测量锚杆变形量,通过激振器向锚杆中输入应力波,通过应力波传感器接收应力波并输出应力波曲线,通过声发射探头定位锚杆与类围岩体界面损伤区。

    一种基于黏弹性波传播分析的短岩杆黏性系数测试方法

    公开(公告)号:CN107014704B

    公开(公告)日:2019-06-25

    申请号:CN201710337797.8

    申请日:2017-05-15

    Applicant: 东北大学

    Abstract: 本发明涉及一种基于黏弹性波传播分析的短岩杆黏性系数测试方法,包括以下步骤:建立岩杆黏弹性本构方程和一维黏弹性波传播的控制方程;基于一维黏弹性波传播的控制方程、透反射理论以及黏弹性损伤理论设计一维黏弹性应力波分析程序;利用一维黏弹性应力波分析程序模拟冲击试验,输入加载波并将模拟冲击试验获得的应变波与验证波进行对比,通过调整参数使模拟的应变波形与验证波形一致,进而获得岩杆的黏性系数。本发明通过模拟试验不断试错的方法得到的黏性系数更加合理;动态冲击试验中只需测得一个完整的波形作为加载波形,另一个验证波形不要求是否有叠加和完整,可以缩短试验中岩杆的长度,有利于天然岩石黏性系数的测试。

    一种一次性测量岩石拉伸模量和压缩模量的试验方法

    公开(公告)号:CN105158070B

    公开(公告)日:2018-03-13

    申请号:CN201510515791.6

    申请日:2015-08-20

    Applicant: 东北大学

    Abstract: 一种一次性测量岩石拉伸模量和压缩模量的试验方法,包括在圆盘试样正反面的中心处分别粘贴水平应变片和竖直应变片;将圆盘试样放置于压力机上,进行巴西盘试验,采用压力传感器监测加载力P,采用水平应变片和竖直应变片分别监测圆盘试样中心的横向应变εx和竖向应变εy;按下式计算得到岩石的拉伸模量和压缩模量: E y = 2 P πDL 3 + ν yx ϵ y - - - ( 1 ) E x = 2 P πDL 3 + ν yx ( 3 + ν yx ) ϵ x + 3 ν yx ϵ y - - - ( 2 ) 式中:Ex和Ey分别表示岩石的拉伸模量和压缩模量,P为外部荷载,D为圆盘直径,L为圆盘厚度,νyx表示y方向应力引起的x方向横向变形系数,εx和εy分别表示圆盘中心横向应变和竖向应变。通过一次试验在同一岩石试样上可以测得该岩石的拉伸模量和压缩模量,试验方法简单宜行,数据精确可靠,结果更具科学性。

    一种一次性测量岩石拉伸模量和压缩模量的试验方法

    公开(公告)号:CN105158070A

    公开(公告)日:2015-12-16

    申请号:CN201510515791.6

    申请日:2015-08-20

    Applicant: 东北大学

    Abstract: 一种一次性测量岩石拉伸模量和压缩模量的试验方法,包括在圆盘试样正反面的中心处分别粘贴水平应变片和竖直应变片;将圆盘试样放置于压力机上,进行巴西盘试验,采用压力传感器监测加载力P,采用水平应变片和竖直应变片分别监测圆盘试样中心的横向应变εx和竖向应变εy;按下式计算得到岩石的拉伸模量和压缩模量:式中:Ex和Ey分别表示岩石的拉伸模量和压缩模量,P为外部荷载,D为圆盘直径,L为圆盘厚度,νyx表示y方向应力引起的x方向横向变形系数,εx和εy分别表示圆盘中心横向应变和竖向应变。通过一次试验在同一岩石试样上可以测得该岩石的拉伸模量和压缩模量,试验方法简单宜行,数据精确可靠,结果更具科学性。

    一种声发射与数值计算相结合的岩石破裂过程分析方法

    公开(公告)号:CN107101887A

    公开(公告)日:2017-08-29

    申请号:CN201710319573.4

    申请日:2017-05-09

    Applicant: 东北大学

    CPC classification number: G01N3/08 G01N2203/0067

    Abstract: 本发明专利提出了一种声发射与数值计算相结合的岩石破裂过程分析方法,将声发射\微震监测与数值计算结合起来对岩石损伤与破裂过程进行分析。首先,利用声发射\微震信息反演破裂源损伤尺寸和程度,对岩石的弹性模量和强度进行相应地弱化;然后将这些参数输入数值模型之中,再进行数值计算分析。利用该方法,可以获取真实应力场并有效预测岩石破裂模式。本发明为研究岩石损伤与破裂提供了一种精确可靠的新方法。

    一种恒定功率加载的岩石力学实验方法

    公开(公告)号:CN106769393A

    公开(公告)日:2017-05-31

    申请号:CN201611129414.X

    申请日:2016-12-09

    Applicant: 东北大学

    Abstract: 本发明提供一种恒定功率加载的岩石力学实验方法,包括:在试验机上增加恒定功率加载控制模块;将岩石试样安放于试验机上,并将声发射监测探头安装在岩石试样表面;在恒定速率加载控制模式下对所述岩石试样施加压力,加载速率保持为V;待岩石试样受力达到设定值F,即岩石试样的受载功率达到P,P=F×V,此时切换为恒定功率加载控制模式,在试验机对岩石试样施加的压力不断增大的同时降低加载速率,但始终保持加载速率与压力的乘积为定值P,直至岩石试样完全破坏,在此过程中监测并记录试验机的压力和压头位移、岩石试样的声发射信号;根据试验机的压力、位移实验结果以及岩石试样的声发射信号数据,分析岩石试样的破坏规律。

    一种基于黏弹性波传播分析的短岩杆黏性系数测试方法

    公开(公告)号:CN107014704A

    公开(公告)日:2017-08-04

    申请号:CN201710337797.8

    申请日:2017-05-15

    Applicant: 东北大学

    CPC classification number: G01N3/303 G01N2203/0075

    Abstract: 本发明涉及一种基于黏弹性波传播分析的短岩杆黏性系数测试方法,包括以下步骤:建立岩杆黏弹性本构方程和一维黏弹性波传播的控制方程;基于一维黏弹性波传播的控制方程、透反射理论以及黏弹性损伤理论设计一维黏弹性应力波分析程序;利用一维黏弹性应力波分析程序模拟冲击试验,输入加载波并将模拟冲击试验获得的应变波与验证波进行对比,通过调整参数使模拟的应变波形与验证波形一致,进而获得岩杆的黏性系数。本发明通过模拟试验不断试错的方法得到的黏性系数更加合理;动态冲击试验中只需测得一个完整的波形作为加载波形,另一个验证波形不要求是否有叠加和完整,可以缩短试验中岩杆的长度,有利于天然岩石黏性系数的测试。

Patent Agency Ranking