基于自适应特征融合的边缘感知图像语义分割方法

    公开(公告)号:CN113658200B

    公开(公告)日:2024-01-02

    申请号:CN202110864679.9

    申请日:2021-07-29

    Applicant: 东北大学

    Abstract: 本发明提供一种基于自适应特征融合的边缘感知图像语义分割方法,是一种以残差网络为基础的新的语义分割方法,是一个双分支网络结构模型,包括边缘分支和语义分支,其中,边缘分支从语义分支的浅层部分被引出,语义分支采用了编码解码结构。在边缘分支中,加入的多尺度交叉融合操作通过叠加空洞率不同的空洞卷积获取图像多尺度特征,同时各个分支之间的交叉融合可以进一步提升多尺度特征的鲁棒性,在语义分支中基于空间注意力机制对深层特征和浅层特征进行融合,可以在获得浅层特征中含有的丰富空间信息的同时,过滤其含有的大量噪声;最后对语义分支特征和边缘分支特征进行融合,进一步优化分割效果。

    基于自适应特征融合的边缘感知图像语义分割方法

    公开(公告)号:CN113658200A

    公开(公告)日:2021-11-16

    申请号:CN202110864679.9

    申请日:2021-07-29

    Applicant: 东北大学

    Abstract: 本发明提供一种基于自适应特征融合的边缘感知图像语义分割方法,是一种以残差网络为基础的新的语义分割方法,是一个双分支网络结构模型,包括边缘分支和语义分支,其中,边缘分支从语义分支的浅层部分被引出,语义分支采用了编码解码结构。在边缘分支中,加入的多尺度交叉融合操作通过叠加空洞率不同的空洞卷积获取图像多尺度特征,同时各个分支之间的交叉融合可以进一步提升多尺度特征的鲁棒性,在语义分支中基于空间注意力机制对深层特征和浅层特征进行融合,可以在获得浅层特征中含有的丰富空间信息的同时,过滤其含有的大量噪声;最后对语义分支特征和边缘分支特征进行融合,进一步优化分割效果。

Patent Agency Ranking