一种基于三层动态粒子群算法的多分类器模型构建方法

    公开(公告)号:CN108364030A

    公开(公告)日:2018-08-03

    申请号:CN201810227288.4

    申请日:2018-03-20

    Applicant: 东北大学

    Abstract: 本发明提供一种基于三层动态粒子群算法的多分类器模型构建方法,涉及数据分析处理技术领域。该方法包括:预处理输入特征向量集;对预处理后的特征向量集反复分类、切分、训练和合并,直到获得支持向量机的支持向量;采用改进的三层粒子群算法对支持向量机核函数进行优化,构建多分类器模型。本发明提供的一种基于三层动态粒子群算法的多分类器模型构建方法,采用分治方法,对初始数据集进行数据块切分,降低子支持向量机的数据处理规模,加快训练时间,同时,对每一层利用相同数量的独立的支持向量机训练,获得支持向量集,充分利用集群环境,提高并行效率,再对最终的支持向量机核参数进行优化,获得最优的支持向量集,从而获得多分类器模型。

    一种基于三层动态粒子群算法的多分类器模型构建方法

    公开(公告)号:CN108364030B

    公开(公告)日:2019-08-20

    申请号:CN201810227288.4

    申请日:2018-03-20

    Applicant: 东北大学

    Abstract: 本发明提供一种基于三层动态粒子群算法的多分类器模型构建方法,涉及数据分析处理技术领域。该方法包括:预处理输入特征向量集;对预处理后的特征向量集反复分类、切分、训练和合并,直到获得支持向量机的支持向量;采用改进的三层粒子群算法对支持向量机核函数进行优化,构建多分类器模型。本发明提供的一种基于三层动态粒子群算法的多分类器模型构建方法,采用分治方法,对初始数据集进行数据块切分,降低子支持向量机的数据处理规模,加快训练时间,同时,对每一层利用相同数量的独立的支持向量机训练,获得支持向量集,充分利用集群环境,提高并行效率,再对最终的支持向量机核参数进行优化,获得最优的支持向量集,从而获得多分类器模型。

Patent Agency Ranking