-
公开(公告)号:CN109816097A
公开(公告)日:2019-05-28
申请号:CN201910062805.1
申请日:2019-01-23
Applicant: 东北大学
Abstract: 本发明提供了一种基于YOLO的Compress-YOLO模型压缩方法,包括设计Compress-YOLO神经网络特征提取部分、使用GoogLeNet的特征提取部分对输入图像进行特征提取、使用Compress-YOLO模型中的两层全卷积层取代YOLO中的两层全连接层、使用一层卷积层对bounding box进行回归、通过reshape层对输出维度进行调整,使得输出维度和YOLO的输出维度相同以及选择PASCAL VOC 2012数据集对设计的Compress-YOLO神经网络模型进行训练;针对训练中出现的过拟合现象,采用Batch Normaliztion层和Scale层组合的方法。本发明提供的基于YOLO的Compress-YOLO模型压缩方法,可以在尽量保证模型性能的同时可以将深度学习部署到嵌入式设备上,且更加密集、计算量更小,提高了网络的性能。
-
公开(公告)号:CN109816097B
公开(公告)日:2022-12-09
申请号:CN201910062805.1
申请日:2019-01-23
Applicant: 东北大学
Abstract: 本发明提供了一种基于YOLO的Compress‑YOLO模型压缩方法,包括设计Compress‑YOLO神经网络特征提取部分、使用GoogLeNet的特征提取部分对输入图像进行特征提取、使用Compress‑YOLO模型中的两层全卷积层取代YOLO中的两层全连接层、使用一层卷积层对bounding box进行回归、通过reshape层对输出维度进行调整,使得输出维度和YOLO的输出维度相同以及选择PASCAL VOC 2012数据集对设计的Compress‑YOLO神经网络模型进行训练;针对训练中出现的过拟合现象,采用Batch Normaliztion层和Scale层组合的方法。本发明提供的基于YOLO的Compress‑YOLO模型压缩方法,可以在尽量保证模型性能的同时可以将深度学习部署到嵌入式设备上,且更加密集、计算量更小,提高了网络的性能。
-