-
公开(公告)号:CN115205594A
公开(公告)日:2022-10-18
申请号:CN202210839548.X
申请日:2022-07-18
Applicant: 东北大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/08
Abstract: 本发明属于图像分类领域,设计了一种基于混合样本的长尾图像数据分类方法,本发明对图像分类研究中遇到的长尾训练集问题提出了一种新的解决方案,旨在使用三个具有特异化知识的专家共同辅助算法做出最终决策,避免单个模型带来的模型分类器权重偏差过大等问题。本发明适用于数据呈长尾分布的图像分类的业务场景,通过设计多个具备特定领域知识的专家,在不损失头部类分类精度的情况下,提高模型对于所有频率分布种类的分类性能,为数据长尾分布时图像分类的实际工程应用提供方案,缓解数据采集困难等问题,改进算法模型对头部类数据的过拟合情况并提高对尾部类数据的学习能力。