基于Transform和对比学习的异构图神经网络容噪方法

    公开(公告)号:CN117787379A

    公开(公告)日:2024-03-29

    申请号:CN202311810583.X

    申请日:2023-12-26

    Applicant: 东北大学

    Abstract: 本发明提供一种基于Transform和对比学习的异构图神经网络容噪方法,涉及异构图神经网络技术领域。该方法首先根据节点对之间的特征相似度、转移概率和局部拓扑结构相似性对邻居节点的可信度打分,将可信度得分低于阈值的节点剪枝;构建特定于降噪场景下的Transform模型,自动的给弱噪声节点分配低的权重系数,弱化噪声节点的影响;最后在使用损失函数训练容噪异构图神经网络模型时,加入一个特定于降噪场景的对比学习损失,将目标节点与噪声节点的嵌入表示相似度降低,进一步强化容噪异构图神经网络模型的降噪能力。该方法提升异构图神经网络模型对于噪声数据的鲁棒性,使目标节点学习到干净的嵌入向量来提升下游任务的性能。

Patent Agency Ranking