对长文本友好的知识图谱表示学习方法

    公开(公告)号:CN113761224A

    公开(公告)日:2021-12-07

    申请号:CN202111020769.6

    申请日:2021-09-01

    Applicant: 东北大学

    Abstract: 本发明公开了对长文本友好的知识图谱表示学习方法,包括如下步骤:步骤一:长文本友好的文本信息抽取;步骤二:BCRL的文本表示模型;骤三:基于TransE的结构化表示;步骤四:结构‑文本联合标识;步骤五:模型训练。本发明提出了一种文本增强的知识图表示模型BCRL,该模型利用实体描述和关系提及来增强三元组的知识表示,该方法从文本‑句子的角度出发,解决了实体描述的不统一、关系提及表示的不准确等问题,能够更有效地捕获文本的语义信息,并且在链路预测任务方面与基准系统相比有显著的改进。

Patent Agency Ranking