-
公开(公告)号:CN107831743A
公开(公告)日:2018-03-23
申请号:CN201711061648.X
申请日:2017-10-31
Applicant: 东北大学
IPC: G05B19/418
Abstract: 本发明提供一种基于可信软标签线性判别分析的工业过程故障诊断方法,涉及故障检测与诊断技术领域。该方法首先采集工业过程的数据;其次对原始数据进行正标记,并对正标记数据进行正标签传播,根据正标签传播结果对原始数据进行正负标签协同传播,使未标记数据获得软标签;然后采用可信的软标签线性判别分析算法计算将高维原始数据投影到低维空间的投影矩阵;最后设计分类器,对工业过程进行在线故障诊断。本发明提供的基于可信软标签线性判别分析的工业过程故障诊断方法,解决了软标签获取时易产生的误分类以及软标记数据使用不当的问题,降低了故障检测中的误报警率,提高了故障检测的准确性。
-
公开(公告)号:CN107861481B
公开(公告)日:2019-12-10
申请号:CN201711053861.6
申请日:2017-10-31
Applicant: 东北大学
IPC: G05B19/418 , G06F17/16
Abstract: 本发明提供一种基于工业大数据图半监督新类挖掘的故障诊断方法,涉及故障监测与诊断技术领域。基于工业大数据图半监督新类挖掘的故障诊断方法,首先采集工业生产过程的数据,并对其进行降维处理;然后对数据点按已标记数据点和未标记数据点进行初始标签标记,并计算软标签矩阵,通过软标签矩阵对故障数据的类别进行诊断;最后对新故障类型重新进行诊断,直到发现所有新的故障类型。本发明的基于工业大数据图半监督新类挖掘的故障诊断方法,实现了对原有故障类型的识别以及未知故障类型的发现,大大降低了故障类型的误报警率,同时提高了故障检测的准确性。
-
公开(公告)号:CN107861481A
公开(公告)日:2018-03-30
申请号:CN201711053861.6
申请日:2017-10-31
Applicant: 东北大学
IPC: G05B19/418 , G06F17/16
Abstract: 本发明提供一种基于工业大数据图半监督新类挖掘的故障诊断方法,涉及故障监测与诊断技术领域。基于工业大数据图半监督新类挖掘的故障诊断方法,首先采集工业生产过程的数据,并对其进行降维处理;然后对数据点按已标记数据点和未标记数据点进行初始标签标记,并计算软标签矩阵,通过软标签矩阵对故障数据的类别进行诊断;最后对新故障类型重新进行诊断,直到发现所有新的故障类型。本发明的基于工业大数据图半监督新类挖掘的故障诊断方法,实现了对原有故障类型的识别以及未知故障类型的发现,大大降低了故障类型的误报警率,同时提高了故障检测的准确性。
-
公开(公告)号:CN107831743B
公开(公告)日:2019-12-10
申请号:CN201711061648.X
申请日:2017-10-31
Applicant: 东北大学
IPC: G05B19/418
Abstract: 本发明提供一种基于可信软标签线性判别分析的工业过程故障诊断方法,涉及故障检测与诊断技术领域。该方法首先采集工业过程的数据;其次对原始数据进行正标记,并对正标记数据进行正标签传播,根据正标签传播结果对原始数据进行正负标签协同传播,使未标记数据获得软标签;然后采用可信的软标签线性判别分析算法计算将高维原始数据投影到低维空间的投影矩阵;最后设计分类器,对工业过程进行在线故障诊断。本发明提供的基于可信软标签线性判别分析的工业过程故障诊断方法,解决了软标签获取时易产生的误分类以及软标记数据使用不当的问题,降低了故障检测中的误报警率,提高了故障检测的准确性。
-
-
-