-
公开(公告)号:CN110649225B
公开(公告)日:2021-01-26
申请号:CN201910927336.5
申请日:2019-09-27
Applicant: 东北大学
IPC: H01M4/13 , H01M4/36 , H01M4/38 , H01M4/583 , H01M10/0525
Abstract: 一种基于CO2制备的Si‑C负极材料及其合成方法和应用,属于电池负极材料制备领域。该方法以硅钙合金和二氧化碳为原料,在氯化钙基或氯化钙‑氯化镁基熔盐中进行反应制备Si‑C负极材料,并将该Si‑C负极材料用于锂离子电池负极材料,该方法成本低,产物可控,操作过程简单。制备的Si‑C负极材料,硅、碳分布均匀,其制备的锂离子电池具有良好的比容量和循环性能。
-
公开(公告)号:CN110660980A
公开(公告)日:2020-01-07
申请号:CN201910927324.2
申请日:2019-09-27
Applicant: 东北大学
IPC: H01M4/36 , H01M4/38 , H01M10/0525 , C25B1/00 , C25B15/02
Abstract: 一种硅基Si-B负极材料及其电化学合成方法和应用,属于电池负极材料制备领域。该硅基Si-B负极材料的电化学合成方法是以硅原料和含硼氧化物为原料,在CaCl2-CaO基盐中,以静态硅原料或动态旋转硅原料为阴极,石墨棒或惰性材料为阳极,施加高于CaCl2-CaO基熔盐中氧化钙分解而低于CaCl2-CaO基熔盐中CaCl2的分解电压,通电进行电解,得到硅基Si-B负极材料。通过调控制备工艺,可以促进Si-B产物中硅和硼分布均匀和进行颗粒尺寸控制,有利于有效缓冲,其作为锂离子电池负极材料中硅锂合金化过程的体积膨胀,提高硅材料的电导率,提高电化学性能。该方法成本低,操作过程简单。
-
公开(公告)号:CN110649238B
公开(公告)日:2020-10-27
申请号:CN201910925689.1
申请日:2019-09-27
Applicant: 东北大学
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525 , C25B1/00
Abstract: 一种硅基Si‑C负极材料及其电化学合成方法和应用,属于电池负极材料制备领域。该电化学方法以冶金硅和二氧化碳为原料,在CaCl2‑CaO基盐中,以静态冶金硅或动态旋转的冶金硅作为阴极,以石墨棒或惰性材料作为阳极,在阴极和阳极之间施加高于氧化钙分解并低于熔盐分解的电压,电解后,通入CO2,静置,后处理后,得到硅基Si‑C负极材料,该方法通过盐的组分,合成温度、合成时间、分解电压和阴极旋转速率,调控硅基Si‑C负极材料中硅和碳的分布,调控产物形貌和颗粒尺寸。该方法实现了低成本、调控制备硅基Si‑C负极材料,操作过程简单。制备的锂离子电池具有良好的比容量和循环性能。
-
公开(公告)号:CN110649238A
公开(公告)日:2020-01-03
申请号:CN201910925689.1
申请日:2019-09-27
Applicant: 东北大学
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M10/0525 , C25B1/00
Abstract: 一种硅基Si-C负极材料及其电化学合成方法和应用,属于电池负极材料制备领域。该电化学方法以冶金硅和二氧化碳为原料,在CaCl2-CaO基盐中,以静态冶金硅或动态旋转的冶金硅作为阴极,以石墨棒或惰性材料作为阳极,在阴极和阳极之间施加高于氧化钙分解并低于熔盐分解的电压,电解后,通入CO2,静置,后处理后,得到硅基Si-C负极材料,该方法通过盐的组分,合成温度、合成时间、分解电压和阴极旋转速率,调控硅基Si-C负极材料中硅和碳的分布,调控产物形貌和颗粒尺寸。该方法实现了低成本、调控制备硅基Si-C负极材料,操作过程简单。制备的锂离子电池具有良好的比容量和循环性能。
-
公开(公告)号:CN110565121A
公开(公告)日:2019-12-13
申请号:CN201910925683.4
申请日:2019-09-27
Applicant: 东北大学
Abstract: 一种高温熔盐中密封动态电极及其电化学合成的装置和方法,该高温熔盐中密封动态电极的驱动装置和动态电极集流体杆连接,动态电极集流体杆套设有直通接头和固定套;固定套的外周套设有轴承;直通接头的一端和动态电极集流体杆上部固定连接,直通接头的另一端和轴承的内圈或外圈固定连接;直通接头和轴承设置在油杯中,油杯的外侧设置有冷却系统,动态电极集流体杆上部设置有裸露处用于连接电源。采用该密封动态电极进行电化学合成,该方法利于高温熔盐中动态电极电化学合成材料过程调控传质、降低电阻、调控产物构造、组成以及形貌,装置解决了高温、常压、与空气隔绝条件下高温熔盐的搅动和密封的问题,操作方便简单。
-
公开(公告)号:CN110668445B
公开(公告)日:2021-02-19
申请号:CN201910925695.7
申请日:2019-09-27
Applicant: 东北大学
IPC: C01B32/963 , H01M4/36 , H01M4/38 , H01M4/587 , H01M10/0525
Abstract: 一种基于硅基氧化物制备的硅基Si‑C负极材料及其制法和应用,属于电池负极材料制备领域。该基于硅基氧化物制备的硅基Si‑C负极材料是以硅基氧化物和碳化钙为原料,在氯化钙基熔盐中进行反应制备硅基Si‑C负极材料,并将该负极材料制备锂离子电池的负极,其制备的锂离子电池具有良好的比容量和循环性能。通过调控盐组成及比例、合成温度、合成时间、搅拌速率和搅拌时间,调控硅基氧化物与碳化钙反应和产物基于硅基氧化物制备的硅基Si‑C负极材料的生成过程。控制反应速率,促进Si‑C产物中硅和碳均匀分布和颗粒尺寸控制,有利于有效缓冲作为锂离子电池负极材料硅锂合金化过程的体积膨胀,提高硅材料的电导率,提高电化学性能。
-
公开(公告)号:CN110660980B
公开(公告)日:2020-11-06
申请号:CN201910927324.2
申请日:2019-09-27
Applicant: 东北大学
IPC: H01M4/36 , H01M4/38 , H01M10/0525 , C25B1/00 , C25B15/02
Abstract: 一种硅基Si‑B负极材料及其电化学合成方法和应用,属于电池负极材料制备领域。该硅基Si‑B负极材料的电化学合成方法是以硅原料和含硼氧化物为原料,在CaCl2‑CaO基盐中,以静态硅原料或动态旋转硅原料为阴极,石墨棒或惰性材料为阳极,施加高于CaCl2‑CaO基熔盐中氧化钙分解而低于CaCl2‑CaO基熔盐中CaCl2的分解电压,通电进行电解,得到硅基Si‑B负极材料。通过调控制备工艺,可以促进Si‑B产物中硅和硼分布均匀和进行颗粒尺寸控制,有利于有效缓冲,其作为锂离子电池负极材料中硅锂合金化过程的体积膨胀,提高硅材料的电导率,提高电化学性能。该方法成本低,操作过程简单。
-
公开(公告)号:CN110565121B
公开(公告)日:2020-07-10
申请号:CN201910925683.4
申请日:2019-09-27
Applicant: 东北大学
Abstract: 一种高温熔盐中密封动态电极及其电化学合成的装置和方法,该高温熔盐中密封动态电极的驱动装置和动态电极集流体杆连接,动态电极集流体杆套设有直通接头和固定套;固定套的外周套设有轴承;直通接头的一端和动态电极集流体杆上部固定连接,直通接头的另一端和轴承的内圈或外圈固定连接;直通接头和轴承设置在油杯中,油杯的外侧设置有冷却系统,动态电极集流体杆上部设置有裸露处用于连接电源。采用该密封动态电极进行电化学合成,该方法利于高温熔盐中动态电极电化学合成材料过程调控传质、降低电阻、调控产物构造、组成以及形貌,装置解决了高温、常压、与空气隔绝条件下高温熔盐的搅动和密封的问题,操作方便简单。
-
公开(公告)号:CN110660988A
公开(公告)日:2020-01-07
申请号:CN201910925672.6
申请日:2019-09-27
Applicant: 东北大学
IPC: H01M4/38 , H01M4/62 , H01M4/134 , H01M10/0525
Abstract: 一种硅基Si-B负极材料及其合成方法和应用,属于电池负极材料制备领域。该硅基Si-B负极材料的合成方法是以硅钙合金和含硼氧化物为原料,在氯化钙基或氯化钙-氯化镁基盐熔盐中进行反应制备硅基Si-B负极材料。在合成过程中,通过盐的组分,合成温度、合成时间、搅拌速率,调控硅和硼的分布,调控产物形貌和颗粒尺寸。该方法实现了低成本、调控制备硅基Si-B负极材料,操作过程简单。制备的Si-B负极材料,硅、硼分布均匀,硅颗粒尺寸可控,其作为锂离子电池负极材料具有良好的比容量和循环性能。
-
公开(公告)号:CN110660988B
公开(公告)日:2020-11-03
申请号:CN201910925672.6
申请日:2019-09-27
Applicant: 东北大学
IPC: H01M4/38 , H01M4/62 , H01M4/134 , H01M10/0525
Abstract: 一种硅基Si‑B负极材料及其合成方法和应用,属于电池负极材料制备领域。该硅基Si‑B负极材料的合成方法是以硅钙合金和含硼氧化物为原料,在氯化钙基或氯化钙‑氯化镁基盐熔盐中进行反应制备硅基Si‑B负极材料。在合成过程中,通过盐的组分,合成温度、合成时间、搅拌速率,调控硅和硼的分布,调控产物形貌和颗粒尺寸。该方法实现了低成本、调控制备硅基Si‑B负极材料,操作过程简单。制备的Si‑B负极材料,硅、硼分布均匀,硅颗粒尺寸可控,其作为锂离子电池负极材料具有良好的比容量和循环性能。
-
-
-
-
-
-
-
-
-