结合选择性升采样的不均衡数据流加权集成分类预测方法

    公开(公告)号:CN107341497A

    公开(公告)日:2017-11-10

    申请号:CN201611038696.2

    申请日:2016-11-11

    Applicant: 东北大学

    CPC classification number: G06K9/6277

    Abstract: 本发明涉及数据挖掘技术领域,提出结合选择性升采样的不均衡数据流加权集成分类预测方法,包括根据相似度对历史数据块的少数类样本进行筛选,选择与当前训练数据块概念最相近的样本;对选择的样本通过在决策边界区域合成新样本以达到选择地实施升采样;采用基于概率分布相关度的权重分配策略对新样本进行加权集成分类处理。通过选择相似度高的历史数据和合成边界区域的新数据来有效增加少数类样本信息,扩大少数类的决策域;同时为了适应存在概念漂移的动态数据,使用集成分类思想,设计一种基于概率分布相关度的权重分配策略,提升整体分类精度。实验结果表明该算法有效地提高了少数类的识别率以及整体的分类性能,具有更好的处理不均衡数据流的优势。

    基于稀疏子空间多任务学习的图像分类预测方法

    公开(公告)号:CN106529601A

    公开(公告)日:2017-03-22

    申请号:CN201611030667.1

    申请日:2016-11-16

    Applicant: 东北大学

    Abstract: 本发明涉及数据挖掘技术领域,提出一种基于稀疏子空间多任务学习的图像分类预测方法,包括:步骤一:根据对训练图像集提取的异构视觉特征构建特征数据;步骤二:基于任务的相关性和异构视觉特征的结构性,根据特征数据的训练数据集建立稀疏子空间的多任务分类算法的目标函数;步骤三:基于稀疏子空间的多任务分类算法的目标函数,采用迭代优化算法进行求解,生成稀疏子空间多任务分类模型;步骤四:采用稀疏子空间多任务分类模型对图像测试图像集进行分类预测。本发明结合子空间相关性和稀疏机制建立多任务学习机制,改善分类器的泛化性能,提高了图像分类的泛化性能。

    基于稀疏子空间多任务学习的图像分类预测方法

    公开(公告)号:CN106529601B

    公开(公告)日:2019-10-11

    申请号:CN201611030667.1

    申请日:2016-11-16

    Applicant: 东北大学

    Abstract: 本发明涉及数据挖掘技术领域,提出一种基于稀疏子空间多任务学习的图像分类预测方法,包括:步骤一:根据对训练图像集提取的异构视觉特征构建特征数据;步骤二:基于任务的相关性和异构视觉特征的结构性,根据特征数据的训练数据集建立稀疏子空间的多任务分类算法的目标函数;步骤三:基于稀疏子空间的多任务分类算法的目标函数,采用迭代优化算法进行求解,生成稀疏子空间多任务分类模型;步骤四:采用稀疏子空间多任务分类模型对图像测试图像集进行分类预测。本发明结合子空间相关性和稀疏机制建立多任务学习机制,改善分类器的泛化性能,提高了图像分类的泛化性能。

Patent Agency Ranking