-
公开(公告)号:CN104949936B
公开(公告)日:2017-10-24
申请号:CN201510405750.1
申请日:2015-07-13
Applicant: 东北大学
IPC: G01N21/359
Abstract: 本发明公开了一种基于优化偏最小二乘回归模型的样品成份测定方法,它是以样品对近红外光谱数据和样品成份浓度数据作为训练数据集,在已有PLS的基础上对训练数据集进行训练,利用训练过程中的预测误差的变化情况来确定相应的潜变量,若新增潜变量降低预测精度,则把该潜变量对应的权值置为0,否则保持不变,继续测试后续潜变量以剔除使预测结果变差的潜变量所对应的相关项,从而实现了潜变量的优化选择,再结合待测样品的近红外光谱数据可生成与原有PLS不同的样品的得分向量和载荷,进而得到待测样品的成份浓度预测值。通过对多种不同样品的测试,本发明的方法与已有PLS算法相比,所得结果的预测根均方误差普遍更小,预测精度均有较大提高。
-
公开(公告)号:CN104949936A
公开(公告)日:2015-09-30
申请号:CN201510405750.1
申请日:2015-07-13
Applicant: 东北大学
IPC: G01N21/359
Abstract: 本发明公开了一种基于优化偏最小二乘回归模型的样品成份测定方法,它是以样品对近红外光谱数据和样品成份浓度数据作为训练数据集,在已有PLS的基础上对训练数据集进行训练,利用训练过程中的预测误差的变化情况来确定相应的潜变量,若新增潜变量降低预测精度,则把该潜变量对应的权值置为0,否则保持不变,继续测试后续潜变量以剔除使预测结果变差的潜变量所对应的相关项,从而实现了潜变量的优化选择,再结合待测样品的近红外光谱数据可生成与原有PLS不同的样品的得分向量和载荷,进而得到待测样品的成份浓度预测值。通过对多种不同样品的测试,本发明的方法与已有PLS算法相比,所得结果的预测根均方误差普遍更小,预测精度均有较大提高。
-