-
公开(公告)号:CN109614981B
公开(公告)日:2023-06-30
申请号:CN201811209429.6
申请日:2018-10-17
Applicant: 东北大学
IPC: G06V10/764 , G06V10/40 , G06N3/0464 , G06F30/20
Abstract: 本发明提供一种基于斯皮尔曼等级相关的卷积神经网络电力系统智能故障检测方法及系统,在区域网络节点处设置相量测量单元,对数据进行测量;将采集的数据进行斯皮尔曼相关性分析,基于分析结果提出图像生成方法;建立等效故障网络,验证故障特征与斯皮尔曼等级相关性的关系,论证方法的可行性;将生成的图像作为初始卷积层,建立基于斯皮尔曼等级相关的卷积神经网络架构;根据建立的架构,基于PSCAD/EMTDC,验证方法的合理性与优越性。综合使用多种电量数据进行故障诊断,通过卷积神经网络可快速、准确的辨识出电力系统中故障所在位置,解决了加入分布式电源等导致电力系统具有波动性以及传统检测方法的不准确性,使电力系统的鲁棒性更高、自适应性更强。
-
公开(公告)号:CN109614981A
公开(公告)日:2019-04-12
申请号:CN201811209429.6
申请日:2018-10-17
Applicant: 东北大学
Abstract: 本发明提供一种基于斯皮尔曼等级相关的卷积神经网络电力系统智能故障检测方法及系统,在区域网络节点处设置相量测量单元,对数据进行测量;将采集的数据进行斯皮尔曼相关性分析,基于分析结果提出图像生成方法;建立等效故障网络,验证故障特征与斯皮尔曼等级相关性的关系,论证方法的可行性;将生成的图像作为初始卷积层,建立基于斯皮尔曼等级相关的卷积神经网络架构;根据建立的架构,基于PSCAD/EMTDC,验证方法的合理性与优越性。综合使用多种电量数据进行故障诊断,通过卷积神经网络可快速、准确的辨识出电力系统中故障所在位置,解决了加入分布式电源等导致电力系统具有波动性以及传统检测方法的不准确性,使电力系统的鲁棒性更高、自适应性更强。
-