一种基于fMRI高维时间序列的信号分类方法及装置

    公开(公告)号:CN114748053A

    公开(公告)日:2022-07-15

    申请号:CN202210216938.1

    申请日:2022-03-07

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于fMRI高维时间序列的信号分类方法及装置,涉及机器学习技术领域,仅使用功能磁共振成像数据而不考虑任何人口统计信息来对受试者进行分类,同时不需要专业人士进行特征标注的深度学习分类算法。数据的每个时间步通过使用卷积神经网络来自动提取特征,生成一个新的表示,然后输入到时序模型Transformer中对时序特征进行学习,最后对学习后的数据进行分类。与传统的机器学习方法相比,深度学习可以直接从复杂的高维数据中学习最佳的特征表示,省去了繁杂不稳定的特征选择过程。有助于解决特征选择方面的困难,与传统的机器学习分类器相比,更适合处理维度过大的原始数据。

Patent Agency Ranking