-
公开(公告)号:CN119089935B
公开(公告)日:2025-01-07
申请号:CN202411575701.8
申请日:2024-11-06
Applicant: 东北大学
IPC: G06N3/042 , G06N3/08 , G06F18/22 , G06F18/214
Abstract: 本发明公开一种基于图异常检测的多渠道数据监控范围调整方法,涉及制造业数据监控技术领域。本发明使用深度学习技术识别多渠道数据当中出现的异常,充分利用了渠道数据间的管理关系,避免了人工筛选、简单统计导致的识别不准确问题,同时根据识别的异常自适应地调整数据监控的范围,使监控能自适应的聚焦到易发生异常的环节,提高对异常渠道数据的识别能力,高效、动态的监控制造业多渠道数据,维护产业链的循环畅通,适用于当今大规模产业链的监控应用,同时提高了监控的效率、聚焦能力,更好的维护产业链的稳定运行。
-
公开(公告)号:CN119089935A
公开(公告)日:2024-12-06
申请号:CN202411575701.8
申请日:2024-11-06
Applicant: 东北大学
IPC: G06N3/042 , G06N3/08 , G06F18/22 , G06F18/214
Abstract: 本发明公开一种基于图异常检测的多渠道数据监控范围调整方法,涉及制造业数据监控技术领域。本发明使用深度学习技术识别多渠道数据当中出现的异常,充分利用了渠道数据间的管理关系,避免了人工筛选、简单统计导致的识别不准确问题,同时根据识别的异常自适应地调整数据监控的范围,使监控能自适应的聚焦到易发生异常的环节,提高对异常渠道数据的识别能力,高效、动态的监控制造业多渠道数据,维护产业链的循环畅通,适用于当今大规模产业链的监控应用,同时提高了监控的效率、聚焦能力,更好的维护产业链的稳定运行。
-