基于改进多尺度模糊熵的滚动轴承故障诊断方法

    公开(公告)号:CN107228766A

    公开(公告)日:2017-10-03

    申请号:CN201710363095.7

    申请日:2017-05-22

    CPC classification number: G01M13/045 G06K9/6269 G06K9/6273

    Abstract: 本发明涉及一种基于改进多尺度模糊熵的滚动轴承故障诊断方法,采集滚动轴承的振动信号;计算振动信号的改进多尺度模糊熵;将前八个尺度上的改进模糊熵作为轴承故障特征向量;将故障特征向量分为训练集和测试集;利用训练集对支持向量机进行训练并用训练好的模型对测试集进行预测;根据预测结果识别滚动轴承的工作状态与故障类型。对模糊熵算法进行改进,用一个总体均值代替的传统模糊熵计算中的局部均值,计算不同尺度下的改进模糊熵。改进后的多尺度模糊熵能更全面地反映信号的特征,从而更准确地评估轴承的运行状态。本发明能够提取更加丰富的轴承状态信息,在故障模式识别过程中有更高的识别率。

    基于改进多尺度模糊熵的滚动轴承故障诊断方法

    公开(公告)号:CN107228766B

    公开(公告)日:2019-03-05

    申请号:CN201710363095.7

    申请日:2017-05-22

    Abstract: 本发明涉及一种基于改进多尺度模糊熵的滚动轴承故障诊断方法,采集滚动轴承的振动信号;计算振动信号的改进多尺度模糊熵;将前八个尺度上的改进模糊熵作为轴承故障特征向量;将故障特征向量分为训练集和测试集;利用训练集对支持向量机进行训练并用训练好的模型对测试集进行预测;根据预测结果识别滚动轴承的工作状态与故障类型。对模糊熵算法进行改进,用一个总体均值代替的传统模糊熵计算中的局部均值,计算不同尺度下的改进模糊熵。改进后的多尺度模糊熵能更全面地反映信号的特征,从而更准确地评估轴承的运行状态。本发明能够提取更加丰富的轴承状态信息,在故障模式识别过程中有更高的识别率。

Patent Agency Ranking