一种轻量级水下目标检测方法、系统、介质、设备及终端

    公开(公告)号:CN114694017A

    公开(公告)日:2022-07-01

    申请号:CN202210406103.2

    申请日:2022-04-18

    Abstract: 本发明属于水下目标检测技术领域,公开了一种轻量级水下目标检测方法、系统、介质、设备及终端。采用CSPDarknet18作为骨干网络来初步提取特征;利用Dense策略提取不同层次和尺度的图像特征;在主干特征提取网和FPN结构之间添加AFF模块,实现跨通道信息交互;构建FPN和PANet网络,同时提取具有语义信息和位置信息的特征;采用深度可分卷积替换普通卷积对加强特征提取网进行重建,以减少参数数量。本发明主要对海参、扇贝、海胆和海星的图像进行定位和识别。实验结果表明,本发明的方法在2020URPC水下目标检测数据集上的mAP达到78.18%,模型参数大小为37.22M,在獐子岛海域的现场采集视频数据上的处理速度分别为10.95和28.05FPS,在准确性和速度方面都取得较好的效果。

    一种轻量级水下目标检测方法、系统、介质、设备及终端

    公开(公告)号:CN114694017B

    公开(公告)日:2024-08-20

    申请号:CN202210406103.2

    申请日:2022-04-18

    Abstract: 本发明属于水下目标检测技术领域,公开了一种轻量级水下目标检测方法、系统、介质、设备及终端。采用CSPDarknet18作为骨干网络来初步提取特征;利用Dense策略提取不同层次和尺度的图像特征;在主干特征提取网和FPN结构之间添加AFF模块,实现跨通道信息交互;构建FPN和PANet网络,同时提取具有语义信息和位置信息的特征;采用深度可分卷积替换普通卷积对加强特征提取网进行重建,以减少参数数量。本发明主要对海参、扇贝、海胆和海星的图像进行定位和识别。实验结果表明,本发明的方法在2020URPC水下目标检测数据集上的mAP达到78.18%,模型参数大小为37.22M,在獐子岛海域的现场采集视频数据上的处理速度分别为10.95和28.05FPS,在准确性和速度方面都取得较好的效果。

Patent Agency Ranking