一种基于深度学习和因子分解机的纵向联邦服务推荐方法

    公开(公告)号:CN118606987A

    公开(公告)日:2024-09-06

    申请号:CN202410638597.6

    申请日:2024-05-22

    Abstract: 本发明公开了一种基于深度学习和因子分解机的纵向联邦服务推荐方法,属于服务计算与服务推荐技术领域。解决了现有技术中传统的纵向联邦因子分解机算法无法应用于双方用户数据一对一的场景的问题;本发明服务提供商引入可信第三方,采用隐私集合求交技术获取双方共同的用户空间并进行用户对齐;服务提供商使用本地深度学习模型处理用户样本数据并通过注意力模型和因子分解机模型提取深度数据特征,得到中间结果;服务提供商通过掩码技术对基于纵向联邦因子分解机算法得到的密文状态计算结果进行解密,得到实际的预测结果和前向梯度并更新本地深度学习模型和因子分解机模型的参数。本发明有效提升了服务推荐的效率,可以应用于服务推荐。

    一种基于纵向联邦多层感知机和持续学习的服务推荐方法

    公开(公告)号:CN118606986A

    公开(公告)日:2024-09-06

    申请号:CN202410638595.7

    申请日:2024-05-22

    Abstract: 本发明公开了一种基于纵向联邦多层感知机和持续学习的服务推荐方法,属于服务计算与服务推荐技术领域。解决了现有技术中传统的服务推荐算法无法充分利用同一用户在多个服务提供商中的全部数据的问题;本发明在出现推荐任务需要进行联邦学习训练或推理时,服务提供商通过协商引入可信第三方;服务提供商之间通过可信第三方采用隐私集合求交技术进行求交,获取双方共同的用户空间;基于共同的用户空间本地采用具有动态结构的多层感知机计算得到中间结果;服务提供商对中间结果进行加密,通过密文数据交互得到计算结果和回传梯度;最终服务提供商通过掩码技术获得实际的计算结果和回传梯度。本发明有效提升了数据应用的全面性,可以应用于服务推荐。

Patent Agency Ranking