-
公开(公告)号:CN114168707B
公开(公告)日:2024-12-17
申请号:CN202111262140.2
申请日:2021-10-28
Applicant: 上海大学
IPC: G06F16/33 , G06F16/332 , G06F16/35 , G06F16/36 , G06F18/2413 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种面向推荐的情绪型对话方法。该方法主要有以下几个步骤:(1)对话数据集的预处理;(2)预测推荐内容模型训练;(3)基于Sequence‑to‑Sequence模型,将历史对话、推荐目标序列、知识图谱、当前回复等作为Encoder的输入,并通过双向GRU模型进行编码,Decoder处加入情绪嵌入模块,由历史对话得到用户当前情绪,在不干扰知识输出的前提下,生成符合用户当前情绪的对话回复;(4)面向推荐的情绪型对话模型调用,通过Sequence‑to‑Sequence编解码,得到最终的对话回复输出。该方法证明了对话机器人不仅仅只拥有单一的知识输出或情绪输出的能力,而且可以将知识输出与情绪输出结合,使对话生成更加类人,进而提升用户体验。
-
公开(公告)号:CN114168707A
公开(公告)日:2022-03-11
申请号:CN202111262140.2
申请日:2021-10-28
Applicant: 上海大学
Abstract: 本发明公开了一种面向推荐的情绪型对话方法。该方法主要有以下几个步骤:(1)对话数据集的预处理;(2)预测推荐内容模型训练;(3)基于Sequence‑to‑Sequence模型,将历史对话、推荐目标序列、知识图谱、当前回复等作为Encoder的输入,并通过双向GRU模型进行编码,Decoder处加入情绪嵌入模块,由历史对话得到用户当前情绪,在不干扰知识输出的前提下,生成符合用户当前情绪的对话回复;(4)面向推荐的情绪型对话模型调用,通过Sequence‑to‑Sequence编解码,得到最终的对话回复输出。该方法证明了对话机器人不仅仅只拥有单一的知识输出或情绪输出的能力,而且可以将知识输出与情绪输出结合,使对话生成更加类人,进而提升用户体验。
-